RESUMO
Urbanization is predicted to be a key driver of disease emergence through human exposure to novel, animal-borne pathogens. However, while we suspect that urban landscapes are primed to expose people to novel animal-borne diseases, evidence for the mechanisms by which this occurs is lacking. To address this, we studied how bacterial genes are shared between wild animals, livestock, and humans (n = 1,428) across Nairobi, Kenya-one of the world's most rapidly developing cities. Applying a multilayer network framework, we show that low biodiversity (of both natural habitat and vertebrate wildlife communities), coupled with livestock management practices and more densely populated urban environments, promotes sharing of Escherichia coli-borne bacterial mobile genetic elements between animals and humans. These results provide empirical support for hypotheses linking resource provision, the biological simplification of urban landscapes, and human and livestock demography to urban dynamics of cross-species pathogen transmission at a landscape scale. Urban areas where high densities of people and livestock live in close association with synanthropes (species such as rodents that are more competent reservoirs for zoonotic pathogens) should be prioritized for disease surveillance and control.
Assuntos
Doenças dos Animais , Animais Selvagens , Animais , Humanos , Quênia/epidemiologia , Animais Selvagens/microbiologia , Ecossistema , Biodiversidade , Cidades , Urbanização , Gado/microbiologiaRESUMO
BACKGROUND: Livestock systems have been proposed as a reservoir for antimicrobial-resistant (AMR) bacteria and AMR genetic determinants that may infect or colonise humans, yet quantitative evidence regarding their epidemiological role remains lacking. Here, we used a combination of genomics, epidemiology and ecology to investigate patterns of AMR gene carriage in Escherichia coli, regarded as a sentinel organism. METHODS: We conducted a structured epidemiological survey of 99 households across Nairobi, Kenya, and whole genome sequenced E. coli isolates from 311 human, 606 livestock and 399 wildlife faecal samples. We used statistical models to investigate the prevalence of AMR carriage and characterise AMR gene diversity and structure of AMR genes in different host populations across the city. We also investigated household-level risk factors for the exchange of AMR genes between sympatric humans and livestock. RESULTS: We detected 56 unique acquired genes along with 13 point mutations present in variable proportions in human and animal isolates, known to confer resistance to nine antibiotic classes. We find that AMR gene community composition is not associated with host species, but AMR genes were frequently co-located, potentially enabling the acquisition and dispersal of multi-drug resistance in a single step. We find that whilst keeping livestock had no influence on human AMR gene carriage, the potential for AMR transmission across human-livestock interfaces is greatest when manure is poorly disposed of and in larger households. CONCLUSIONS: Findings of widespread carriage of AMR bacteria in human and animal populations, including in long-distance wildlife species, in community settings highlight the value of evidence-based surveillance to address antimicrobial resistance on a global scale. Our genomic analysis provided an in-depth understanding of AMR determinants at the interfaces of One Health sectors that will inform AMR prevention and control.
Assuntos
Gado , Saúde Única , Humanos , Animais , Escherichia coli/genética , Antibacterianos/farmacologia , Quênia/epidemiologia , Farmacorresistência Bacteriana/genéticaRESUMO
Infectious diseases have the potential to extirpate populations of great apes. As the interface between humans and great apes expands, zoonoses pose an increasingly severe threat to already endangered great ape populations. Despite recognition of the threat posed by human pathogens to great apes, health monitoring is only conducted for a small fraction of the world's wild great apes (and mostly those that are habituated) meaning that outbreaks of disease often go unrecognized and therefore unmitigated. This lack of surveillance (even in sites where capacity to conduct surveillance is present) is the most significant limiting factor in our ability to quickly detect and respond to emerging infectious diseases in great apes when they first appear. Accordingly, we must create a surveillance system that links disease outbreaks in humans and great apes in time and space, and enables veterinarians, clinicians, conservation managers, national decision makers, and the global health community to respond quickly to these events. Here, we review existing great ape health surveillance programs in African range habitats to identify successes, gaps, and challenges. We use these findings to argue that standardization of surveillance across sites and geographic scales, that monitors primate health in real-time and generates early warnings of disease outbreaks, is an efficient, low-cost step to conserve great ape populations. Such a surveillance program, which we call "Great Ape Health Watch" would lead to long-term improvements in outbreak preparedness, prevention, detection, and response, while generating valuable data for epidemiological research and sustainable conservation planning. Standardized monitoring of great apes would also make it easier to integrate with human surveillance activities. This approach would empower local stakeholders to link wildlife and human health, allowing for near real-time, bidirectional surveillance at the great ape-human interface.
Assuntos
Doenças dos Símios Antropoides , Doenças Transmissíveis Emergentes , Hominidae , Animais , Animais Selvagens , Doenças dos Símios Antropoides/epidemiologia , Doenças dos Símios Antropoides/prevenção & controle , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/veterinária , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Zoonoses/epidemiologia , Zoonoses/prevenção & controleRESUMO
Urbanization can have profound impacts on the distributional ecology of wildlife and livestock, with implications for biodiversity conservation, ecosystem services and human health. A wealth of studies have assessed biotic responses to urbanization in North America and Europe, but there is little empirical evidence that directly links human activities to urban biodiversity in the tropics. Results from a large-scale field study conducted in Nairobi, Kenya, are used to explore the impact of human activities on the biodiversity of wildlife and livestock with which humans co-exist across the city. The structure of sympatric wildlife, livestock and human populations are characterized using unsupervised machine learning, and statistical modelling is used to relate compositional variation in these communities to socio-ecological drivers occurring across the city. By characterizing landscape-scale drivers acting on these interfaces, we demonstrate that socioeconomics, elevation and subsequent changes in habitat have measurable impacts upon the diversity, density and species assemblage of wildlife, livestock and humans. Restructuring of wildlife and livestock assemblages (both in terms of species diversity and composition) has important implications for the emergence of novel diseases at urban interfaces, and we therefore use our results to generate a set of testable hypotheses that explore the influence of urban change on microbial communities. These results provide novel insight into the impact of urbanization on biodiversity in the tropics. An understanding of associations between urban processes and the structure of human and animal populations is required to link urban development to conservation efforts and risks posed by disease emergence to human health, ultimately informing sustainable urban development policy.
Assuntos
Biodiversidade , Ecossistema , Animais , Cidades , Conservação dos Recursos Naturais , Europa (Continente) , Humanos , Quênia , América do Norte , Urbanização , VertebradosRESUMO
Long-term studies of morbidity and mortality in free-ranging primates are scarce, but may have important implications for the conservation of extant populations. Infants comprise a particularly important age group, as variation in survival rates may have a strong influence on population dynamics. Since 1968, the Mountain Gorilla Veterinary Project (MGVP, Inc.) and government partners have conducted a comprehensive health monitoring and disease investigation program on mountain gorillas (Gorilla beringei beringei) in Rwanda, Uganda, and the Democratic Republic of the Congo. In an effort to better understand diseases in this species, we reviewed reliable field reports (n = 37), gross post-mortem (n = 66), and histopathology (n = 53) reports for 103 infants (less than 3.5 years) mountain gorillas in the Virunga Massif. Our aim was to conduct the first comprehensive analysis of causes of infant mortality and to correlate histological evidence with antemortem morbidity in infant mountain gorillas. Causes of morbidity and mortality were described, and compared by age, sex, and over time. Trauma was the most common cause of death in infants (56%), followed by respiratory infections and aspiration (13%). Gastrointestinal parasitism (33%), atypical lymphoid hyperplasia (suggestive of infectious disease) (31%), and hepatic capillariasis (25%) were the most significant causes of antemortem morbidity identified post-mortem. Identifying the causes of mortality and morbidity in infants of this critically endangered species will help to inform policy aimed at their protection and guide ante- and post-mortem health monitoring and clinical decision-making in the future.
Assuntos
Gorilla gorilla , Mortalidade/tendências , Animais , República Democrática do Congo , Estudos Retrospectivos , Ruanda , UgandaRESUMO
BACKGROUND: Surveillance data documenting tick and tick-borne disease (TBD) prevalence is needed to develop risk assessments and implement control strategies. Despite extensive research in Africa, there is no standardized, comprehensive review. METHODS: Here we tackle this knowledge gap, by producing a comprehensive review of research articles on ticks and TBD between 1901 and 2020 in Chad, Djibouti, Ethiopia, Kenya, Tanzania, and Uganda. Over 8356 English language articles were recovered. Our search strategy included 19 related MeSH terms. Articles were reviewed, and 331 met inclusion criteria. Articles containing mappable data were compiled into a standardized data schema, georeferenced, and uploaded to VectorMap. RESULTS: Tick and pathogen matrixes were created, providing information on vector distributions and tick-pathogen associations within the six selected African countries. CONCLUSIONS: These results provide a digital, mappable database of current and historical tick and TBD distributions across six countries in Africa, which can inform specific risk modeling, determine surveillance gaps, and guide future surveillance priorities.
Assuntos
Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Etiópia , Quênia , Tanzânia , Doenças Transmitidas por Carrapatos/epidemiologia , África SubsaarianaRESUMO
The emergence of COVID-19 has drawn the attention of health researchers sharply back to the role that food systems can play in generating human disease burden. But emerging pandemic threats are just one dimension of the complex relationship between agriculture and infectious disease, which is evolving rapidly, particularly in low-income and middle-income countries (LMICs) that are undergoing rapid food system transformation. We examine this changing relationship through four current disease issues. The first is that greater investment in irrigation to improve national food security raises risks of vector-borne disease, which we illustrate with the case of malaria and rice in Africa. The second is that the intensification of livestock production in LMICs brings risks of zoonotic diseases like cysticercosis, which need to be managed as consumer demand grows. The third is that the nutritional benefits of increasing supply of fresh vegetables, fruit, and animal-sourced foods in markets in LMICs pose new food-borne disease risks, which might undermine supply. The fourth issue is that the potential human health risks of antimicrobial resistance from agriculture are intensified by changing livestock production. For each disease issue, we explore how food system transition is creating unintentional infectious disease risks, and what solutions might exist for these problems. We show that successfully addressing all of these challenges requires a coordinated approach between public health and agricultural sectors, recognising the costs and benefits of disease-reducing interventions to both, and seeking win-win solutions that are most likely to attract broad policy support and uptake by food systems.
Assuntos
COVID-19 , Doenças Transmissíveis , Animais , COVID-19/epidemiologia , Doenças Transmissíveis/epidemiologia , Países em Desenvolvimento , Humanos , Pobreza , Saúde PúblicaRESUMO
The COVID-19 pandemic has underscored the need to strengthen national surveillance systems to protect a globally connected world. In low-income and middle-income countries, zoonotic disease surveillance has advanced considerably in the past two decades. However, surveillance efforts often prioritise urban and adjacent rural communities. Communities in remote rural areas have had far less support despite having routine exposure to zoonotic diseases due to frequent contact with domestic and wild animals, and restricted access to health care. Limited disease surveillance in remote rural areas is a crucial gap in global health security. Although this point has been made in the past, practical solutions on how to implement surveillance efficiently in these resource-limited and logistically challenging settings have yet to be discussed. We highlight why investing in disease surveillance in remote rural areas of low-income and middle-income countries will benefit the global community and review current approaches. Using semi-arid regions in Kenya as a case study, we provide a practical approach by which surveillance in remote rural areas can be strengthened and integrated into existing systems. This Viewpoint represents a transition from simply highlighting the need for a more holistic approach to disease surveillance to a solid plan for how this outcome might be achieved.
Assuntos
COVID-19 , Saúde Global , Países em Desenvolvimento , Humanos , Pandemias , PobrezaRESUMO
Quantitative evidence for the risk of zoonoses and the spread of antimicrobial resistance remains lacking. Here, as part of the UrbanZoo project, we sampled Escherichia coli from humans, livestock and peri-domestic wildlife in 99 households across Nairobi, Kenya, to investigate its distribution among host species in this rapidly developing urban landscape. We performed whole-genome sequencing of 1,338 E. coli isolates and found that the diversity and sharing patterns of E. coli were heavily structured by household and strongly shaped by host type. We also found evidence for inter-household and inter-host sharing and, importantly, between humans and animals, although this occurs much less frequently. Resistome similarity was differently distributed across host and household, consistent with being driven by shared exposure to antimicrobials. Our results indicate that a large, epidemiologically structured sampling framework combined with WGS is needed to uncover strain-sharing events among different host populations in complex environments and the major contributing pathways that could ultimately drive the emergence of zoonoses and the spread of antimicrobial resistance.
Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Quênia/epidemiologia , Gado , MetagenômicaRESUMO
Increasingly intimate associations between human society and the natural environment are driving the emergence of novel pathogens, with devastating consequences for humans and animals alike. Prior to emergence, these pathogens exist within complex ecological systems that are characterized by trophic interactions between parasites, their hosts and the environment. Predicting how disturbance to these ecological systems places people and animals at risk from emerging pathogens-and the best ways to manage this-remains a significant challenge. Predictive systems ecology models are powerful tools for the reconstruction of ecosystem function but have yet to be considered for modelling infectious disease. Part of this stems from a mistaken tendency to forget about the role that pathogens play in structuring the abundance and interactions of the free-living species favoured by systems ecologists. Here, we explore how developing and applying these more complete systems ecology models at a landscape scale would greatly enhance our understanding of the reciprocal interactions between parasites, pathogens and the environment, placing zoonoses in an ecological context, while identifying key variables and simplifying assumptions that underly pathogen host switching and animal-to-human spillover risk. As well as transforming our understanding of disease ecology, this would also allow us to better direct resources in preparation for future pandemics.
Assuntos
Doenças Transmissíveis , Ecossistema , Animais , Humanos , ZoonosesRESUMO
The effects of COVID-19 have gone undocumented in nomadic pastoralist communities across Africa, which are largely invisible to health surveillance systems despite the fact that they are of key significance in the setting of emerging infectious disease. We expose these landscapes as a "blind spot" in global health surveillance, elaborate on the ways in which current health surveillance infrastructure is ill-equipped to capture pastoralist populations and the animals with which they coexist, and highlight the consequential risks of inadequate surveillance among pastoralists and their livestock to global health. As a platform for further dialogue, we present concrete solutions to address this gap.
Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Vigilância da População/métodos , Migrantes , África/epidemiologia , Animais , COVID-19 , Doenças Transmissíveis Emergentes/epidemiologia , Atenção à Saúde , Ecossistema , Política de Saúde , Humanos , Pandemias , SARS-CoV-2RESUMO
BACKGROUND: Antimicrobial resistance is one of the great challenges facing global health security in the modern era. Wildlife, particularly those that use urban environments, are an important but understudied component of epidemiology of antimicrobial resistance. We investigated antimicrobial resistance overlap between sympatric wildlife, humans, livestock, and their shared environment across the developing city of Nairobi, Kenya. We use these data to examine the role of urban wildlife in the spread of clinically relevant antimicrobial resistance. METHODS: 99 households across Nairobi were randomly selected on the basis of socioeconomic stratification. A detailed survey was administered to household occupants, and samples (n=2102) were collected from the faeces of 75 wildlife species inhabiting household compounds (ie, the household and its perimeter; n=849), 13 livestock species (n=656), and humans (n=333), and from the external environment (n=288). Escherichia coli, our sentinel organism, was cultured and a single isolate from each sample tested for sensitivity to 13 antibiotics. Diversity of antimicrobial resistant phenotypes was compared between urban wildlife, humans, livestock, and the environment, to investigate whether wildlife are a net source for antimicrobial resistance in Nairobi. Generalised linear mixed models were used to determine whether the prevalence of antimicrobial resistant phenotypes and multidrug-resistant E coli carriage in urban wildlife is linked to variation in ecological traits, such as foraging behaviour, and to determine household-level risk factors for sharing of antimicrobial resistance between humans, wildlife, and livestock. FINDINGS: E coli were isolated from 485 samples collected from wildlife between Sept 6,2015, and Sept 28, 2016. Wildlife carried a low prevalence of E coli isolates susceptible to all antibiotics tested (45 [9%] of 485 samples) and a high prevalence of clinically relevant multidrug resistance (252 [52%] of 485 samples), which varied between taxa and by foraging traits. Multiple isolates were resistant to one agent from at least seven antimicrobial classes tested for, and a single isolate was resistant to all antibiotics tested for in the study. The phenotypic diversity of antimicrobial-resistant E coli in wildlife was lower than in livestock, humans, and the environment. Within household compounds, statistical models identified two interfaces for exchange of antimicrobial resistance: between both rodents, humans and their rubbish, and seed-eating birds, humans and their rubbish; and between seed-eating birds, cattle, and bovine manure. INTERPRETATION: Urban wildlife carry a high burden of clinically relevant antimicrobial-resistant E coli in Nairobi, exhibiting resistance to drugs considered crucial for human medicine by WHO. Identifiable traits of the wildlife contribute to this exposure; however, compared with humans, livestock, and the environment, low phenotypic diversity in wildlife is consistent with the hypothesis that wildlife are a net sink rather than source of clinically relevant resistance. Wildlife that interact closely with humans, livestock, and both human and livestock waste within households, are exposed to more antimicrobial resistant phenotypes, and could therefore act as conduits for the dissemination of clinically relevant antimicrobial resistance to the wider environment. These results provide novel insight into the broader epidemiology of antimicrobial resistance in complex urban environments, characteristic of lower-middle-income countries. FUNDING: UK Medical Research Council and CGIAR Research Program on Agriculture for Nutrition and Health.
Assuntos
Animais Domésticos/microbiologia , Animais Selvagens/microbiologia , Farmacorresistência Bacteriana , Infecções por Escherichia coli/veterinária , Escherichia coli/efeitos dos fármacos , Esterco/microbiologia , Animais , Antibacterianos/farmacologia , Infecções por Escherichia coli/epidemiologia , Quênia/epidemiologia , Gado/microbiologia , Prevalência , Aves Canoras/microbiologiaRESUMO
BACKGROUND: Antimicrobial resistance (AMR) driven by antibiotic consumption is a growing global health threat. However, data on antimicrobial consumption patterns in low- and middle-income countries (LMICs) is sparse. Here, we investigate the patterns of antibiotic sales in humans and livestock in urban Nairobi, Kenya, and evaluate the level of awareness and common behaviours related to antibiotic use and AMR amongst human and veterinary pharmacists. METHODS: A total of 40 human and 19 veterinary drug store pharmacists were interviewed in Nairobi in 2018 using a standard questionnaire. Data recorded included demographic variables, types of antibiotics sold, antibiotic customers, antibiotic prescribing practices and knowledge of antibiotic use and AMR. RESULTS: Our study shows that at the retail level, there is a considerable overlap between antibiotic classes (10/15) sold for use in both human and veterinary medicine. Whilst in our study, clinical training significantly influenced knowledge on issues related to antibiotic use and AMR and respondents had a relatively adequate level of knowledge about AMR, several inappropriate prescribing practices were identified. For example, we found that most veterinary and human drug stores (100% and 52% respectively) sold antibiotics without a prescription and noted that customer preference was an important factor when prescribing antibiotics in half of the drug stores. CONCLUSION: Although more research is needed to understand the drivers of antibiotic consumption in both human and animal populations, these findings highlight the need for immediate strategies to improve prescribing practices across the pharmacists in Nairobi and by extension other low- and middle-income country settings.
Assuntos
Antibacterianos/uso terapêutico , Conhecimentos, Atitudes e Prática em Saúde , Farmacêuticos/psicologia , Adulto , Animais , Estudos Transversais , Resistência Microbiana a Medicamentos , Feminino , Humanos , Prescrição Inadequada/estatística & dados numéricos , Quênia , Masculino , Farmacêuticos/estatística & dados numéricos , Inquéritos e QuestionáriosRESUMO
There are substantial limitations in understanding of the distribution of antimicrobial resistance (AMR) in humans and livestock in developing countries. This papers present the results of an epidemiological study examining patterns of AMR in Escherichia coli isolates circulating in sympatric human (nâ¯=â¯321) and livestock (nâ¯=â¯633) samples from 99 households across Nairobi, Kenya. E. coli isolates were tested for susceptibility to 13 antimicrobial drugs representing nine antibiotic classes. High rates of AMR were detected, with 47.6% and 21.1% of isolates displaying resistance to three or more and five or more antibiotic classes, respectively. Human isolates showed higher levels of resistance to sulfonamides, trimethoprim, aminoglycosides and penicillins compared with livestock (P<0.01), while poultry isolates were more resistant to tetracyclines (Pâ¯=â¯0.01) compared with humans. The most common co-resistant phenotype observed was to tetracyclines, streptomycin and trimethoprim (30.5%). At the household level, AMR carriage in humans was associated with human density (P<0.01) and the presence of livestock manure (Pâ¯=â¯0.03), but keeping livestock had no influence on human AMR carriage (P>0.05). These findings revealed a high prevalence of AMR E. coli circulating in healthy humans and livestock in Nairobi, with no evidence to suggest that keeping livestock, when treated as a single risk factor, contributed significantly to the burden of AMR in humans, although the presence of livestock waste was significant. These results provide an understanding of the broader epidemiology of AMR in complex and interconnected urban environments.
Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/fisiologia , Infecções por Escherichia coli/epidemiologia , Escherichia coli/efeitos dos fármacos , Gado/microbiologia , Aves Domésticas/microbiologia , Aminoglicosídeos/farmacologia , Animais , Estudos Transversais , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Quênia/epidemiologia , Testes de Sensibilidade Microbiana , Penicilinas/farmacologia , Sulfonamidas/farmacologia , Tetraciclinas/farmacologia , Trimetoprima/farmacologiaRESUMO
Urbanization is characterized by rapid intensification of agriculture, socioeconomic change, and ecological fragmentation, which can have profound impacts on the epidemiology of infectious disease. Here, we review current scientific evidence for the drivers and epidemiology of emerging wildlife-borne zoonoses in urban landscapes, where anthropogenic pressures can create diverse wildlife-livestock-human interfaces. We argue that these interfaces represent a critical point for cross-species transmission and emergence of pathogens into new host populations, and thus understanding their form and function is necessary to identify suitable interventions to mitigate the risk of disease emergence. To achieve this, interfaces must be studied as complex, multihost communities whose structure and form are dictated by both ecological and anthropological factors.
Assuntos
Animais Selvagens , Gado , Urbanização , Zoonoses , Animais , Doenças Transmissíveis , HumanosRESUMO
Cysts morphologically resembling Balantidium coli were identified in the feces of a mountain gorilla (Gorilla beringei beringei). Confirmatory PCR and sequencing revealed two distinct B. coli-specific sequences (ITS-1, sub-types A0 and B1). This represents the first report of B. coli in this species, raising the possibility of infection from a reservoir host.