Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Sci ; 115(5): 1688-1694, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38356184

RESUMO

There is some biological plausibility that exogenous melatonin plays a role in preventing liver carcinogenesis. There has been little research on the association between melatonin intake in a normal diet and health outcomes. We evaluated the association between dietary melatonin intake and the incidence of liver cancer in a population-based prospective study in Japan. This study included 30,824 residents of Takayama city who were 35 years of age or older in 1992 and had participated in the Takayama study, Japan. Dietary intake was assessed using a validated food frequency questionnaire at the baseline. Melatonin content in foods was measured by liquid chromatography-tandem mass spectrometry. Cancer incidence was confirmed through regional population-based cancer registries in Gifu. Liver cancer was defined as code C22 according to the International Classification of Diseases and Related Health Problems, 10th Revision. Hazard ratios for liver cancer were estimated for the tertile groups of melatonin intake using a Cox proportional hazards model. During the mean follow-up period of 13.6 years, 189 individuals developed liver cancer. Compared with subjects in the lowest tertile of melatonin intake, those in the middle and highest tertiles had decreased risks of liver cancer, with a significant linear trend after multivariate adjustments (hazard ratios: 0.64 and 0.65, respectively, trend p = 0.023). There was no significant interaction by sex (interaction p = 0.54). This initial finding, which needs to be confirmed by further studies, suggests that consuming melatonin-containing foods might play a role in the prevention of liver cancer.


Assuntos
Dieta , Neoplasias Hepáticas , Melatonina , Humanos , Melatonina/administração & dosagem , Japão/epidemiologia , Masculino , Feminino , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/prevenção & controle , Incidência , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto , Idoso , Modelos de Riscos Proporcionais
2.
J Pineal Res ; 76(1): e12934, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241676

RESUMO

Melatonin is a molecule ubiquitous in nature and involved in several physiological functions. In the brain, melatonin is converted to N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and then to N1-acetyl-5-methoxykynuramine (AMK), which has been reported to strongly enhance long-term object memory formation. However, the synthesis of AMK in brain tissues and the underlying mechanisms regarding memory formation remain largely unknown. In the present study, young and old individuals from a melatonin-producing strain, C3H/He mice, were employed. The amount of AMK in the pineal gland and plasma was very low compared with those of melatonin at night; conversely, in the hippocampus, the amount of AMK was higher than that of melatonin. Indoleamine 2, 3-dioxygenase (Ido) mRNA was expressed in multiple brain tissues, whereas tryptophan 2,3-dioxygenase (Tdo) mRNA was expressed only in the hippocampus, and its lysate had melatonin to AFMK conversion activity, which was blocked by the TDO inhibitor. The expression levels of phosphorylated cAMP response element binding protein (CREB) and PSD-95 in whole hippocampal tissue were significantly increased with AMK treatment. Before increasing in the whole tissue, CREB phosphorylation was significantly enhanced in the nuclear fraction. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we found that downregulated genes in hippocampus of old C3H/He mice were more enriched for long-term potentiation (LTP) pathway. Gene set enrichment analysis showed that LTP and neuroactive receptor interaction gene sets were enriched in hippocampus of old mice. In addition, Ido1 and Tdo mRNA expression was significantly decreased in the hippocampus of old mice compared with young mice, and the decrease in Tdo mRNA was more pronounced than Ido1. Furthermore, there was a higher decrease in AMK levels, which was less than 1/10 that of young mice, than in melatonin levels in the hippocampus of old mice. In conclusion, we first demonstrated the Tdo-related melatonin to AMK metabolism in the hippocampus and suggest a novel mechanism of AMK involved in LTP and memory formation. These results support AMK as a potential therapeutic agent to prevent memory decline.


Assuntos
Melatonina , Camundongos , Animais , Melatonina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fosforilação , Camundongos Endogâmicos C3H , Cinuramina/metabolismo , Envelhecimento , Hipocampo/metabolismo , RNA Mensageiro/metabolismo
3.
J Periodontal Res ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501307

RESUMO

OBJECTIVE: This study aims to investigate the mechanisms underlying the impaired healing response by diabetes after periodontal therapy. BACKGROUND: Outcomes of periodontal therapy in patients with diabetes are impaired compared with those in patients without diabetes. However, the mechanisms underlying impaired healing response to periodontal therapy have not been sufficiently investigated. MATERIALS AND METHODS: Zucker diabetic fatty (ZDF) and lean (ZL) rats underwent experimental periodontitis by ligating the mandibular molars for one week. The gingiva at the ligated sites was harvested one day after ligature removal, and gene expression was comprehensively analyzed using RNA-Seq. In patients with and without type 2 diabetes (T2D), the corresponding gene expression was quantified in the gingiva of the shallow sulcus and residual periodontal pocket after non-surgical periodontal therapy. RESULTS: Ligation-induced bone resorption and its recovery after ligature removal were significantly impaired in the ZDF group than in the ZL group. The RNA-Seq analysis revealed 252 differentially expressed genes. Pathway analysis demonstrated the enrichment of downregulated genes involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. PPARα and PPARγ were decreased in mRNA level and immunohistochemistry in the ZDF group than in the ZL group. In clinical, probing depth reduction was significantly less in the T2D group than control. Significantly downregulated expression of PPARα and PPARγ were detected in the residual periodontal pocket of the T2D group compared with those of the control group, but not in the shallow sulcus between the groups. CONCLUSIONS: Downregulated PPAR subtypes expression may involve the impaired healing of periodontal tissues by diabetes.

4.
Zoolog Sci ; 41(1): 105-116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587523

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) is an indolamine that is synthesized from tryptophan in the pineal glands of vertebrates through four enzymatic reactions. Melatonin is a quite unique bioactive substance, characterized by a combination of both receptor-mediated and receptor-independent actions, which promote the diverse effects of melatonin. One of the main functions of melatonin, via its membrane receptors, is to regulate the circadian or seasonal rhythm. In mammals, light information, which controls melatonin synthesis, is received in the eye, and transmitted to the pineal gland, via the suprachiasmatic nucleus, where the central clock is located. Alternatively, in many vertebrates other than mammals, the pineal gland cells, which are involved in melatonin synthesis and secretion and in the circadian clock, directly receive light. Recently, it has been reported that melatonin possesses several metabolic functions, which involve bone and glucose, in addition to regulating the circadian rhythm. Melatonin improves bone strength by inhibiting osteoclast activity. It is also known to maintain brain activity during sleep by increasing glucose uptake at night, in an insulin-independent manner. Moreover, as a non-receptor-mediated action, melatonin has antioxidant properties. Melatonin has been proven to be a potent free radical scavenger and a broad-spectrum antioxidant, even protecting organisms against radiation from space. Melatonin is a ubiquitously distributed molecule and is found in bacteria, unicellular organisms, fungi, and plants. It is hypothesized that melatonin initially functioned as an antioxidant, then, in vertebrates, it combined this role with the ability to regulate rhythm and metabolism, via its receptors.


Assuntos
Relógios Circadianos , Melatonina , Animais , Melatonina/farmacologia , Antioxidantes , Vertebrados , Mamíferos
5.
J Pineal Res ; 74(1): e12834, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36203395

RESUMO

Exposure to the space environment induces a number of pathophysiological outcomes in astronauts, including bone demineralization, sleep disorders, circadian clock dysregulation, cardiovascular and metabolic dysfunction, and reduced immune system function. A recent report describing experiments aboard the Space Shuttle mission, STS-132, showed that the level of melatonin, a hormone that provides the biochemical signal of darkness, was decreased during microgravity in an in vitro culture model. Additionally, abnormal lighting conditions in outer space, such as low light intensity in orbital spacecraft and the altered 24-h light-dark cycles, may result in the dysregulation of melatonin rhythms and the misalignment of the circadian clock from sleep and work schedules in astronauts. Studies on Earth have demonstrated that melatonin regulates various physiological functions including bone metabolism. These data suggest that the abnormal regulation of melatonin in outer space may contribute to pathophysiological conditions of astronauts. In addition, experiments with high-linear energy transfer radiation, a ground-based model of space radiation, showed that melatonin may serve as a protectant against space radiation. Gene expression profiling using an in vitro culture model exposed to space flight during the STS-132 mission, showed that space radiation alters the expression of DNA repair and oxidative stress response genes, indicating that melatonin counteracts the expression of these genes responsive to space radiation to promote cell survival. These findings implicate the use of exogenous melatonin and the regulation of endogenous melatonin as countermeasures for the physiological consequences of space flight.


Assuntos
Transtornos Cronobiológicos , Relógios Circadianos , Melatonina , Lesões por Radiação , Voo Espacial , Humanos , Melatonina/farmacologia , Melatonina/fisiologia , Ritmo Circadiano/fisiologia
6.
FASEB J ; 35(2): e21171, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33197074

RESUMO

Skeletal muscles have a high metabolic capacity, which play key roles in glucose metabolism. Although periodontal disease increases the risk of metabolic syndrome, the relationship between periodontal bacterial infection and skeletal muscle metabolic dysfunction is unclear. We found that anti-Porphyromonas gingivalis (Pg) antibody titers positively correlated with intramuscular adipose tissue content (IMAC), fasting blood glucose, and HOMA-IR in metabolic syndrome patients. In C57BL/6J mice fed a high-fat diet, recipients of oral Pg (HFPg) had impaired glucose tolerance, insulin resistance, and higher IMAC compared to recipients of saline (HFco). The soleus muscle in HFPg mice exhibited fat infiltration and lower glucose uptake with higher Tnfa expression and lower insulin signaling than in HFco mice. Gene set enrichment analysis showed that TNFα signaling via NFκB gene set was enriched in the soleus muscle of HFPg mice. Moreover, TNF-α also decreased glucose uptake in C2C12 myoblast cells in vitro. Based on 16S rRNA sequencing, Pg administration altered the gut microbiome, particularly by decreasing the abundance of genus Turicibacter. Microbial network of the gut microbiome was dramatically changed by Pg administration. Our findings suggest that infection with Pg is a risk factor for metabolic syndrome and skeletal muscle metabolic dysfunction via gut microbiome alteration.


Assuntos
Infecções por Bacteroidaceae/metabolismo , Glicemia/metabolismo , Microbioma Gastrointestinal/genética , Síndrome Metabólica/sangue , Músculo Esquelético/metabolismo , Doenças Periodontais/sangue , Porphyromonas gingivalis/metabolismo , Tecido Adiposo/metabolismo , Adulto , Idoso , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Infecções por Bacteroidaceae/microbiologia , Linhagem Celular Transformada , Dieta Hiperlipídica , Fezes/microbiologia , Feminino , Intolerância à Glucose/metabolismo , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Resistência à Insulina , Japão/epidemiologia , Masculino , Síndrome Metabólica/complicações , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mioblastos/metabolismo , Doenças Periodontais/complicações , Doenças Periodontais/epidemiologia , Doenças Periodontais/microbiologia , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/imunologia , RNA Ribossômico 16S/genética
7.
Zoolog Sci ; 39(4)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35960027

RESUMO

It is known that the bone matrix plays an important role in the response to physical stresses such as hypergravity and microgravity. In order to accurately analyze the response of bone to hypergravity and microgravity, a culture system under the conditions of coexistence of osteoclasts, osteoblasts, and bone matrix was earnestly desired. The teleost scale is a unique calcified organ in which osteoclasts, osteoblasts, and the two layers of bone matrix, i.e., a bony layer and a fibrillary layer, coexist. Therefore, we have developed in vitro organ culture systems of osteoclasts and osteoblasts with the intact bone matrix using goldfish scales. Using the scale culture system, we examined the effects of hypergravity with a centrifuge and simulated ground microgravity (g-µG) with a three-dimensional clinostat on osteoclasts and osteoblasts. Under 3-gravity (3G) loading for 1 day, osteoclastic marker mRNA expression levels decreased, while the mRNA expression of the osteoblastic marker increased. Upon 1 day of exposure, the simulated g-µG induced remarkable enhancement of osteoclastic marker mRNA expression, whereas the osteoblastic marker mRNA expression decreased. In response to these gravitational stimuli, osteoclasts underwent major morphological changes. By simulated g-µG treatments, morphological osteoclastic activation was induced, while osteoclastic deactivation was observed in the 3G-treated scales. In space experiments, the results that had been obtained with simulated g-µG were reproduced. RNA-sequencing analysis showed that osteoclastic activation was induced by the down-regulation of Wnt signaling under flight-microgravity. Thus, goldfish scales can be utilized as a bone model to analyze the responses of osteoclasts and osteoblasts to gravity.


Assuntos
Hipergravidade , Ausência de Peso , Animais , Carpa Dourada/genética , Carpa Dourada/metabolismo , Osteoblastos , Osteoclastos/metabolismo , RNA Mensageiro/genética
8.
Ecotoxicol Environ Saf ; 234: 113401, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35298967

RESUMO

To study the toxicity of 3-hydroxybenzo[c]phenanthrene (3-OHBcP), a metabolite of benzo[c]phenanthrene (BcP), first we compared it with its parent compound, BcP, using an in ovo-nanoinjection method in Japanese medaka. Second, we examined the influence of 3-OHBcP on bone metabolism using goldfish. Third, the detailed mechanism of 3-OHBcP on bone metabolism was investigated using zebrafish and goldfish. The LC50s of BcP and 3-OHBcP in Japanese medaka were 5.7 nM and 0.003 nM, respectively, indicating that the metabolite was more than 1900 times as toxic as the parent compound. In addition, nanoinjected 3-OHBcP (0.001 nM) induced skeletal abnormalities. Therefore, fish scales with both osteoblasts and osteoclasts on the calcified bone matrix were examined to investigate the mechanisms of 3-OHBcP toxicity on bone metabolism. We found that scale regeneration in the BcP-injected goldfish was significantly inhibited as compared with that in control goldfish. Furthermore, 3-OHBcP was detected in the bile of BcP-injected goldfish, indicating that 3-OHBcP metabolized from BcP inhibited scale regeneration. Subsequently, the toxicity of BcP and 3-OHBcP to osteoblasts was examined using an in vitro assay with regenerating scales. The osteoblastic activity in the 3-OHBcP (10-10 to 10-7 M)-treated scales was significantly suppressed, while BcP (10-11 to 10-7 M)-treated scales did not affect osteoblastic activity. Osteoclastic activity was unchanged by either BcP or 3-OHBcP treatment at each concentration (10-11 to 10-7 M). The detailed toxicity of 3-OHBcP (10-9 M) in osteoblasts was then examined using gene expression analysis on a global scale with fish scales. Eight genes, including APAF1, CHEK2, and FOS, which are associated with apoptosis, were identified from the upregulated genes. This indicated that 3-OHBcP treatment induced apoptosis in fish scales. In situ detection of cell death by TUNEL methods was supported by gene expression analysis. This study is the first to demonstrate that 3-OHBcP, a metabolite of BcP, has greater toxicity than the parent compound, BcP.

9.
Am J Epidemiol ; 190(12): 2639-2646, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34387322

RESUMO

Potential health benefits of melatonin have been suggested. Although melatonin is present in various foods, little is known about the health effects of dietary melatonin intake. We estimated habitual dietary melatonin intake and examined its association with total and cause-specific mortality in a population-based cohort study in Japan. Study subjects included 13,355 men and 15,724 women aged ≥35 years who responded to a self-administered questionnaire in 1992. Their diets were assessed via a food frequency questionnaire at baseline. The melatonin content in various foods on the questionnaire was measured to estimate melatonin intake. Mortality was ascertained during 16 years of follow-up (1992-2008). Hazard ratios (HRs) and 95% confidence intervals (CIs) for total and cause-specific mortality were calculated according to melatonin quartiles. A total of 5,339 deaths occurred during follow-up. Melatonin intake was significantly associated with decreased risks of total mortality, cardiovascular mortality, and noncancer, noncardiovascular mortality after controlling for covariates; HRs for the highest quartile of melatonin intake versus the lowest were 0.90 (95% CI: 0.82, 0.98; P for trend = 0.05), 0.85 (95% CI: 0.72, 0.99; P for trend = 0.10), and 0.77 (95% CI: 0.67, 0.90; P for trend = 0.003), respectively. The data suggest a potential benefit of dietary melatonin with regard to mortality rates.


Assuntos
Dieta/estatística & dados numéricos , Melatonina/administração & dosagem , Mortalidade/tendências , Adulto , Idoso , Causas de Morte/tendências , Ingestão de Alimentos , Feminino , Humanos , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sono , Fatores Sociodemográficos
10.
J Pineal Res ; 70(1): e12703, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33125735

RESUMO

Melatonin (MEL) has been reported to enhance cognitive processes, making it a potential treatment for cognitive decline. However, the role of MEL's metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in these effects are unknown. The current study directly investigated the acute effects of systemic MEL, AFMK, and AMK on novel object recognition. We also analyzed MEL, AFMK, and AMK levels in hippocampus and temporal lobe containing the perirhinal cortex following systemic MEL and AMK treatment. AMK administered post-training had a more potent effect on object memory than MEL and AFMK. AMK was also able to rescue age-associated declines in memory impairments when object memory was tested up to 4 days following training. Results from administering AMK at varying times around the training trial and the metabolism time course in brain tissue suggest that AMK's memory-enhancing effects reflect memory consolidation. Furthermore, inhibiting the MEL-to-AMK metabolic pathway disrupted object memory at 24 hours post-training, suggesting that endogenous AMK might play an important role in long-term memory formation. This is the first study to report that AMK facilitates long-term object memory performance in mice, and that MEL crosses the blood-brain barrier and is immediately converted to AMK in brain tissue. Overall, these results support AMK as a potential therapeutic agent to improve or prevent memory decline.


Assuntos
Comportamento Animal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Cinuramina/análogos & derivados , Melatonina/farmacologia , Memória de Longo Prazo/efeitos dos fármacos , Lobo Temporal/efeitos dos fármacos , Fatores Etários , Animais , Biotransformação , Hipocampo/metabolismo , Cinuramina/metabolismo , Cinuramina/farmacologia , Masculino , Melatonina/deficiência , Melatonina/genética , Camundongos Endogâmicos ICR , Teste de Campo Aberto , Lobo Temporal/metabolismo , Fatores de Tempo
11.
Biochem Biophys Res Commun ; 530(4): 644-650, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768192

RESUMO

Melatonin has been implicated in the regulation of bone metabolism; however, the molecular mechanisms underlying its involvement in fracture healing are still obscure. We previously developed an in vivo fracture healing model using the scale of a double-transgenic zebrafish, trap:GFP; osterix:mCherry, which labels osteoclasts and osteoblasts with GFP and mCherry, respectively. Here we show using this model that melatonin inhibits both osteoblast and osteoclast differentiation under fracture stress through the repression of Erk signaling in epidermal cells of the scale. Melatonin treatment resulted in reduced numbers of both osteoblasts and osteoclasts in the fractured scale. Immunochemistry analysis revealed that Erk signals in epidermal cells, which express melatonin receptors, were greatly enhanced in response to fracture stress, but this enhancement was blocked by melatonin treatment. Moreover, inhibition of Erk signaling phenocopied the effects of melatonin treatment in the fractured scale. Collectively, these data suggest that the activation of epidermal Erk signaling is required for both osteoblast and osteoclast differentiation in the early stage of fracture healing, and melatonin suppresses epidermal Erk signaling, leading to impaired fracture healing.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melatonina/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Escamas de Animais/citologia , Escamas de Animais/efeitos dos fármacos , Escamas de Animais/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Consolidação da Fratura/efeitos dos fármacos , Osteoblastos/citologia , Osteoclastos/citologia , Peixe-Zebra/fisiologia
12.
J Pineal Res ; 67(3): e12594, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31286565

RESUMO

Astronauts experience osteoporosis-like loss of bone mass because of microgravity conditions during space flight. To prevent bone loss, they need a riskless and antiresorptive drug. Melatonin is reported to suppress osteoclast function. However, no studies have examined the effects of melatonin on bone metabolism under microgravity conditions. We used goldfish scales as a bone model of coexisting osteoclasts and osteoblasts and demonstrated that mRNA expression level of acetylserotonin O-methyltransferase, an enzyme essential for melatonin synthesis, decreased significantly under microgravity. During space flight, microgravity stimulated osteoclastic activity and significantly increased gene expression for osteoclast differentiation and activation. Melatonin treatment significantly stimulated Calcitonin (an osteoclast-inhibiting hormone) mRNA expression and decreased the mRNA expression of receptor activator of nuclear factor κB ligand (a promoter of osteoclastogenesis), which coincided with suppressed gene expression levels for osteoclast functions. This is the first study to report the inhibitory effect of melatonin on osteoclastic activation by microgravity. We also observed a novel action pathway of melatonin on osteoclasts via an increase in CALCITONIN secretion. Melatonin could be the source of a potential novel drug to prevent bone loss during space flight.


Assuntos
Reabsorção Óssea/prevenção & controle , Melatonina/uso terapêutico , Voo Espacial , Animais , Densidade Óssea/efeitos dos fármacos , Calcitonina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Carpa Dourada , Imuno-Histoquímica , NF-kappa B/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Ausência de Peso/efeitos adversos
13.
Curr Genomics ; 20(5): 332-339, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32476990

RESUMO

Circadian clocks are intrinsic, time-tracking systems that bestow upon organisms a survival advantage. Under natural conditions, organisms are trained to follow a 24-h cycle under environmental time cues such as light to maximize their physiological efficiency. The exact timing of this rhythm is established via cell-autonomous oscillators called cellular clocks, which are controlled by transcription/translation-based negative feedback loops. Studies using cell-based systems and genetic techniques have identified the molecular mechanisms that establish and maintain cellular clocks. One such mechanism, known as post-translational modification, regulates several aspects of these cellular clock components, including their stability, subcellular localization, transcriptional activity, and interaction with other proteins and signaling pathways. In addition, these mechanisms contribute to the integration of external signals into the cellular clock machinery. Here, we describe the post-translational modifications of cellular clock regulators that regulate circadian clocks in vertebrates.

14.
Gen Comp Endocrinol ; 262: 99-105, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29574148

RESUMO

We examined the effects of α-melanocyte-stimulating hormone (α-MSH) on bone metabolism using regenerating goldfish scales. Normally developed scales on the bodies of goldfish were removed to allow the regeneration of scales under anesthesia. Thereafter, the influence of α-MSH on the regeneration of goldfish scales was investigated in vivo. In brief, α-MSH was injected at a low dose (0.1 µg/g body weight) or a high dose (1 µg/g body weight) into goldfish every other day. Ten days after removing the scales, we collected regenerating scales and analyzed osteoblastic and osteoclastic activities as respective marker enzyme (alkaline phosphatase for osteoblasts, tartrate-resistant acid phosphatase for osteoclasts) activity in the regenerating scales as well as plasma calcium levels. At both doses, osteoblastic and osteoclastic activities in the regenerating scales increased significantly. Plasma calcium concentrations in the α-MSH-treated group (high doses) were significantly higher than those in the control group. Next, in vitro experiments were performed to confirm the results of in vivo experiments. In the cultured regenerating scales, osteoblastic and osteoclastic activities significantly increased with α-MSH (10-7 and 10-6 M) treatment. In addition, real-time PCR analysis indicated that osteoclastogenesis in α-MSH-treated scales was induced by the receptor activator of the NF-κB/receptor activator of the NF-κB ligand/osteoprotegerin pathway. Furthermore, we found that α-MSH receptors (melanocortin receptors 4 and 5) were detected in the regenerating scales. Thus, in teleosts, we are the first to demonstrate that α-MSH functions in bone metabolism and promotes bone resorption via melatonin receptors 4 and/or 5.


Assuntos
Reabsorção Óssea/patologia , Carpa Dourada/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , alfa-MSH/farmacologia , Fosfatase Alcalina/metabolismo , Escamas de Animais/metabolismo , Animais , Reabsorção Óssea/genética , Cálcio/sangue , Cálcio/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Carpa Dourada/sangue , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regeneração/efeitos dos fármacos
15.
Artigo em Inglês | MEDLINE | ID: mdl-29886255

RESUMO

This study aimed to investigate the precise data of gene expression, functions, and chronological relationships amongst communication molecules involved in the bone remodeling process with an in vivo model using autologous transplanted scales of goldfish. Autotransplantation of methanol-fixed cell-free scales triggers scale resorption and regeneration, as well as helps elucidate the process of bone remodeling. We investigated osteoclastic markers, osteoblastic markers, and gene expressions of communicating molecules (RANKL, ephrinB2, EphB4, EphA4, Wnt10b) by qPCR, in situ hybridization for Wnt10b, and immunohistochemistry for EphrinB2 and EphA4 proteins to elucidate the bone remodeling process. Furthermore, functional inhibition experiments for the signaling of ephrinB2/Eph, ephrin/EphA4, and Wnt10b using specific antibodies, revealed that these proteins are involved in key signaling pathways promoting normal bone remodeling. Our data suggests that the remodeling process comprises of two successive phases. In the first absorption phase, differentiation of osteoclast progenitors by RANKL is followed by the bone absorption by mature, active osteoclasts, with the simultaneous induction of osteoblast progenitors by multinucleated osteoclast-derived Wnt10b, and proliferation of osteoblast precursors by ehprinB2/EphB4 signaling. Subsequently, during the second formation phase, termination of bone resorption by synergistic cooperation occurs, with downregulation of RANKL expression in activated osteoblasts and Ephrin/EphA4-mediated mutual inhibition between neighboring multinucleated osteoclasts, along with simultaneous activation of osteoblasts via forward and reverse EphrinB2/EphB4 signaling between neighboring osteoblasts. In addition, the present study shows that autologous transplantation of methanol-fixed cell-free scale is an ideal in vivo model to study bone remodeling.


Assuntos
Escamas de Animais/transplante , Remodelação Óssea/fisiologia , Comunicação Celular/fisiologia , Efrinas/fisiologia , Proteínas de Peixes/fisiologia , Ligante RANK/fisiologia , Proteínas Wnt/fisiologia , Animais , Western Blotting , Carpa Dourada , Osteoblastos/citologia , Osteoclastos/citologia
16.
Gen Comp Endocrinol ; 246: 294-300, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28062302

RESUMO

Calcitonin (CT) is a hormone that decreases serum calcium level by suppressing osteoclastic activity in the vertebrate bone. In vertebrates, the structure-function relationship of CTs has been studied extensively. We recently identified three CT superfamily peptides, Bf-CTFP1 to 3, and clarified the molecular and functional characteristics of their receptor and receptor activity-modifying protein in amphioxus, Branchiostoma floridae. However, the CT activity of Bf-CTFPs has yet to be investigated. In the present study, a functional analysis of Bf-CTFPs was performed using goldfish scales having both osteoclasts and osteoblasts. All Bf-CTFPs suppressed osteoclastic activity via a goldfish CT receptor. Although the primary amino acid sequences of the Bf-CTFPs showed low sequence similarity to vertebrate CTs, Bf-CTFP1 to 3 share three amino acids, Thr25, Thr27, and Pro32-NH2, that are required for receptor binding, with salmon CT. Moreover, homology model analysis revealed that the Bf-CTFPs form alpha-helical structures. The alpha-helical position and length of Bf-CTFP1 and 2 were conserved with those of a highly potent ligand, teleost CT. Interestingly, the composition of the alpha-helix of Bf-CTFP3 differed from those of teleost CT, despite that the action of Bf-CTFP3 on goldfish scales was the same as that of Bf-CTFP1 and 2. Collectively, the present study provides new insights into the structure-function relationship of CT and its functional evolution in chordates.


Assuntos
Calcitonina/genética , Carpa Dourada/metabolismo , Peptídeos/genética , Sequência de Aminoácidos , Animais , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Relação Estrutura-Atividade
17.
Artigo em Inglês | MEDLINE | ID: mdl-27643756

RESUMO

Increased risk of fracture associated with type 2 diabetes has been a topic of recent concern. Fracture risk is related to a decrease in bone strength, which can be affected by bone metabolism and the quality of the bone. To investigate the cause of the increased fracture rate in patients with diabetes through analyses of bone metabolism and bone matrix protein properties, we used goldfish scales as a bone model for hyperglycemia. Using the scales of seven alloxan-treated and seven vehicle-treated control goldfish, we assessed bone metabolism by analyzing the activity of marker enzymes and mRNA expression of marker genes, and we measured the change in molecular weight of scale matrix proteins with SDS-PAGE. After only a 2-week exposure to hyperglycemia, the molecular weight of α- and ß-fractions of bone matrix collagen proteins changed incrementally in the regenerating scales of hyperglycemic goldfish compared with those of euglycemic goldfish. In addition, the relative ratio of the γ-fraction significantly increased, and a δ-fraction appeared after adding glyceraldehyde-a candidate for the formation of advanced glycation end products in diabetes-to isolated type 1 collagen in vitro. The enzymatic activity and mRNA expression of osteoblast and osteoclast markers were not significantly different between hyperglycemic and euglycemic goldfish scales. These results indicate that hyperglycemia is likely to affect bone quality through glycation of matrix collagen from an early stage of hyperglycemia. Therefore, non-enzymatic glycation of collagen fibers in bone matrix may lead to the deterioration of bone quality from the onset of diabetes.


Assuntos
Osso e Ossos/metabolismo , Hiperglicemia/metabolismo , Aloxano/administração & dosagem , Animais , Glicemia/metabolismo , Eletroforese em Gel de Poliacrilamida , Carpa Dourada
18.
Artigo em Inglês | MEDLINE | ID: mdl-28614698

RESUMO

The nucleotide sequence of a sardine preprocalcitonin precursor has been determined from their ultimobranchial glands in the present study. From our analysis of this sequence, we found that sardine procalcitonin was composed of procalcitonin amino-terminal cleavage peptide (N-proCT) (53 amino acids), CT (32 amino acids), and procalcitonin carboxyl-terminal cleavage peptide (C-proCT) (18 amino acids). As compared with C-proCT, N-proCT has been highly conserved among teleosts, reptiles, and birds, which suggests that N-proCT has some bioactivities. Therefore, both sardine N-proCT and sardine CT were synthesized, and their bioactivities for osteoblasts and osteoclasts were examined using our assay system with goldfish scales that consisted of osteoblasts and osteoclasts. As a result, sardine N-proCT (10-7M) activated osteoblastic marker enzyme activity, while sardine CT did not change. On the other hand, sardine CT (10-9 to 10-7M) suppressed osteoclastic marker enzyme activity, although sardine N-proCT did not influence enzyme activity. Furthermore, the mRNA expressions of osteoblastic markers such as type 1 collagen and osteocalcin were also promoted by sardine N-proCT (10-7M) treatment; however, sardine CT did not influence their expressions. The osteoblastic effects of N-proCT lack agreement. In the present study, we can evaluate exactly the action for osteoblasts because our scale assay system is very sensitive and it is a co-culture system for osteoblasts and osteoclasts with calcified bone matrix. Both CT and N-proCT seem to influence osteoblasts and osteoclasts and promote bone formation by different actions in teleosts.


Assuntos
Calcitonina/análogos & derivados , Calcitonina/farmacologia , Osteoblastos/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Sequência de Bases , Calcitonina/genética , Carpa Dourada , Filogenia , Homologia de Sequência de Aminoácidos
19.
Zoolog Sci ; 33(4): 407-13, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27498800

RESUMO

We have developed an original in vitro bioassay using teleost scale, that has osteoclasts, osteoblasts, and bone matrix as each marker: alkaline phosphatase (ALP) for osteoblasts and tartrate-resistant acid phosphatase (TRAP) for osteoclasts. Using this scale in vitro bioassay, we examined the effects of seawater polluted with highly concentrated polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) on osteoblastic and osteoclastic activities in the present study. Polluted seawater was collected from two sites (the Alexandria site on the Mediterranean Sea and the Suez Canal site on the Red Sea). Total levels of PAHs in the seawater from the Alexandria and Suez Canal sites were 1364.59 and 992.56 ng/l, respectively. We were able to detect NPAHs in both seawater samples. Total levels of NPAHs were detected in the seawater of the Alexandria site (12.749 ng/l) and the Suez Canal site (3.914 ng/l). Each sample of polluted seawater was added to culture medium at dilution rates of 50, 100, and 500, and incubated with the goldfish scales for 6 hrs. Thereafter, ALP and TRAP activities were measured. ALP activity was significantly suppressed by both polluted seawater samples diluted at least 500 times, but TRAP activity did not change. In addition, mRNA expressions of osteoblastic markers (ALP, osteocalcin, and the receptor activator of the NF-κB ligand) decreased significantly, as did the ALP enzyme activity. In fact, ALP activity decreased on treatment with PAHs and NPAHs. We conclude that seawater polluted with highly concentrated PAHs and NPAHs influences bone metabolism in teleosts.


Assuntos
Carpa Dourada , Tegumento Comum , Osteoblastos/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Água do Mar/química , Poluentes Químicos da Água/toxicidade , Animais , Regulação da Expressão Gênica , Marcadores Genéticos , Hidrocarbonetos Policíclicos Aromáticos/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Poluentes Químicos da Água/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-26850473

RESUMO

Using fish scales in which osteoclasts and osteoblasts coexist on the calcified bone matrix, we examined the effects of low-intensity pulsed ultrasound (LIPUS) on both osteoclasts and osteoblasts. At 3h of incubation after LIPUS treatment, osteoclastic markers such as tartrate-resistant acid phosphatase (TRAP) and cathepsin K mRNA expressions decreased significantly while mRNA expressions of osteoblastic markers, osteocalcin, distal-less homeobox 5, runt-related transcription factor 2a, and runt-related transcription factor 2b, increased significantly. At 6 and 18h of incubation, however, both osteoclastic and osteoblastic marker mRNA expression did not change at least present conditions. Using GeneChip analysis of zebrafish scales treated with LIPUS, we found that cell death-related genes were upregulated with LIPUS treatment. Real-time PCR analysis indicated that the expression of apoptosis-related genes also increased significantly. To confirm the involvement of apoptosis in osteoclasts with LIPUS, osteoclasts were induced by autotransplanting scales in goldfish. Thereafter, the DNA fragmentation associated with apoptosis was detected in osteoclasts using the TUNEL (TdT-mediated dUTP nick end labeling) method. The multi-nuclei of TRAP-stained osteoclasts in the scales were labeled with TUNEL. TUNEL staining showed that the number of apoptotic osteoclasts in goldfish scales was significantly elevated by treatment with LIPUS at 3h of incubation. Thus, we are the first to demonstrate that LIPUS directly functions to osteoclasts and to conclude that LIPUS directly causes apoptosis in osteoclasts shortly after exposure.


Assuntos
Apoptose , Carpa Dourada/metabolismo , Modelos Animais , Osteoclastos/metabolismo , Ultrassom , Animais , Osteoclastos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA