RESUMO
Photoplethysmography (PPG) is a non-invasive optical technique that measures changes in blood volume in the microvascular tissue bed of the body. While it shows potential as a clinical tool for blood pressure (BP) assessment and hypertension management, several sources of error can affect its performance. One such source is the PPG-based algorithm, which can lead to measurement bias and inaccuracy. Here, we review seven widely used measures to assess PPG-based algorithm performance and recommend implementing standardized error evaluation steps in their development. This standardization can reduce bias and improve the reliability and accuracy of PPG-based BP estimation, leading to better health outcomes for patients managing hypertension.
RESUMO
Remote photoplethysmography (rPPG) is a promising contactless technology that uses videos of faces to extract health parameters, such as heart rate. Several methods for transforming red, green, and blue (RGB) video signals into rPPG signals have been introduced in the existing literature. The RGB signals represent variations in the reflected luminance from the skin surface of an individual over a given period of time. These methods attempt to find the best combination of color channels to reconstruct an rPPG signal. Usually, rPPG methods use a combination of prepossessed color channels to convert the three RGB signals to one rPPG signal that is most influenced by blood volume changes. This study examined simple yet effective methods to convert the RGB to rPPG, relying only on RGB signals without applying complex mathematical models or machine learning algorithms. A new method, GRGB rPPG, was proposed that outperformed most machine-learning-based rPPG methods and was robust to indoor lighting and participant motion. Moreover, the proposed method estimated the heart rate better than well-established rPPG methods. This paper also discusses the results and provides recommendations for further research.
RESUMO
Because humans age at different rates, a person's physical appearance may yield insights into their biological age and physiological health more reliably than their chronological age. In medicine, however, appearance is incorporated into medical judgments in a subjective and non-standardized fashion. In this study, we developed and validated FaceAge, a deep learning system to estimate biological age from easily obtainable and low-cost face photographs. FaceAge was trained on data from 58,851 healthy individuals, and clinical utility was evaluated on data from 6,196 patients with cancer diagnoses from two institutions in the United States and The Netherlands. To assess the prognostic relevance of FaceAge estimation, we performed Kaplan Meier survival analysis. To test a relevant clinical application of FaceAge, we assessed the performance of FaceAge in end-of-life patients with metastatic cancer who received palliative treatment by incorporating FaceAge into clinical prediction models. We found that, on average, cancer patients look older than their chronological age, and looking older is correlated with worse overall survival. FaceAge demonstrated significant independent prognostic performance in a range of cancer types and stages. We found that FaceAge can improve physicians' survival predictions in incurable patients receiving palliative treatments, highlighting the clinical utility of the algorithm to support end-of-life decision-making. FaceAge was also significantly associated with molecular mechanisms of senescence through gene analysis, while age was not. These findings may extend to diseases beyond cancer, motivating using deep learning algorithms to translate a patient's visual appearance into objective, quantitative, and clinically useful measures.
RESUMO
The contactless recording of a photoplethysmography (PPG) signal with a Red-Green-Blue (RGB) camera is known as remote photoplethysmography (rPPG). Studies have reported on the positive impact of using this technique, particularly in heart rate estimation, which has led to increased research on this topic among scientists. Therefore, converting from RGB signals to constructing an rPPG signal is an important step. Eight rPPG methods (plant-orthogonal-to-skin (POS), local group invariance (LGI), the chrominance-based method (CHROM), orthogonal matrix image transformation (OMIT), GREEN, independent component analysis (ICA), principal component analysis (PCA), and blood volume pulse (PBV) methods) were assessed using dynamic time warping, power spectrum analysis, and Pearson's correlation coefficient, with different activities (at rest, during exercising in the gym, during talking, and while head rotating) and four regions of interest (ROI): the forehead, the left cheek, the right cheek, and a combination of all three ROIs. The best performing rPPG methods in all categories were the POS, LGI, and OMI methods; each performed well in all activities. Recommendations for future work are provided.
RESUMO
Regular monitoring of blood pressure (BP) allows for early detection of hypertension and symptoms related to cardiovascular disease. Measuring BP with a cuff requires equipment that is not always readily available and it may be impractical for some patients. Smartphones are an integral part of the lives of most people; thus, detecting and monitoring hypertension with a smartphone is likely to increase the ability to monitor BP due to the convenience of use for many patients. Smartphones lend themselves to assessing cardiovascular health because their built-in sensors and cameras provide a means of detecting arterial pulsations. To this end, several image processing and machine learning (ML) techniques for predicting BP using a smartphone have been developed. Several ML models that utilize smartphones are discussed in this literature review. Of the 53 papers identified, seven publications were evaluated. The performance of the ML models was assessed based on their accuracy for classification, the mean error measure, and the standard deviation of error for regression. It was found that artificial neural networks and support vector machines were often used. Because a variety of influencing factors determines the performance of an ML model, no clear preference could be determined. The number of input features ranged from five to 233, with the most commonly used being demographic data and the features extracted from photoplethysmogram signals. Each study had a different number of participants, ranging from 17 to 5,992. Comparisons of the cuff-based measures were mostly used to validate the results. Some of these ML models are already used to detect hypertension and BP but, to satisfy possible regulatory demands, improved reliability is needed under a wider range of conditions, including controlled and uncontrolled environments. A discussion of the advantages of various ML techniques and the selected features is offered at the end of this systematic review.