Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 36(15): e2309625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38224595

RESUMO

The implementation of low-cost and rapid technologies for the on-site detection of mycotoxin-contaminated crops is a promising solution to address the growing concerns of the agri-food industry. Recently, there have been significant developments in surface-enhanced Raman spectroscopy (SERS) for the direct detection of mycotoxins in food and feed. This review provides an overview of the most recent advancements in the utilization of SERS through the successful fabrication of novel nanostructured materials. Various bottom-up and top-down approaches have demonstrated their potential in improving sensitivity, while many applications exploit the immobilization of recognition elements and molecular imprinted polymers (MIPs) to enhance specificity and reproducibility in complex matrices. Therefore, the design and fabrication of nanomaterials is of utmost importance and are presented herein. This paper uncovers that limited studies establish detection limits or conduct validation using naturally contaminated samples. One decade on, SERS is still lacking significant progress and there is a disconnect between the technology, the European regulatory limits, and the intended end-user. Ongoing challenges and potential solutions are discussed including nanofabrication, molecular binders, and data analytics. Recommendations to assay design, portability, and substrate stability are made to help improve the potential and feasibility of SERS for future on-site agri-food applications.


Assuntos
Micotoxinas , Nanoestruturas , Análise Espectral Raman/métodos , Reprodutibilidade dos Testes , Alimentos
2.
Foods ; 12(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38137302

RESUMO

There is a growing demand from consumers for more assurance in premium food products such as beef and especially steak. The quality of beef steak is primarily dictated by the maturation which ultimately influences its taste and flavor. These enhanced qualities have resulted in steak becoming a premium product that consumers are willing to pay a premium price for. A challenge, however, is analyzing the maturity of beef by traditional analytical techniques. Hyperspectral imaging (HSI) is a methodology that is gaining traction mainly due to miniaturization, improved optics, and software. In this study, HSI was applied to wet aged beef supplied at various stages of maturity, with spectral data generated using a portable hyperspectral camera. Two trials were conducted over a five-month period: (i) proof of principle and (ii) a bespoke sampling trial for the industry. With the support of industry participation, all samples were sourced from a highly reputable UK/Ireland supplier. To enhance data interpretation, the spectral data collected were combined with multivariate analysis. A range of chemometric models were generated using unsupervised and supervised methods to determine the maturity of the beef, and external validation was performed. The external validation showed good accuracy for "unknown samples" tested against the model set and ranged from 74 to 100% for the different stages of maturity (20, 30, and 40 days old). This study demonstrated that HSI can detect different maturity timepoints for beef samples, which could play an important role in solving some of the challenges that the industry faces with ensuring the authenticity of their products. This is the first time that portable HSI has been coupled with chemometric modeling for assessing the maturity of beef, and it can serve as a model for other food authenticity and quality applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA