Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2318444121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598340

RESUMO

Fluid efflux from the brain plays an important role in solute waste clearance. Current experimental approaches provide little spatial information, and data collection is limited due to short duration or low frequency of sampling. One approach shows tracer efflux to be independent of molecular size, indicating bulk flow, yet also decelerating like simple membrane diffusion. In an apparent contradiction to this report, other studies point to tracer efflux acceleration. We here develop a one-dimensional advection-diffusion model to gain insight into brain efflux principles. The model is characterized by nine physiological constants and three efflux parameters for which we quantify prior uncertainty. Using Bayes' rule and the two efflux studies, we validate the model and calculate data-informed parameter distributions. The apparent contradictions in the efflux studies are resolved by brain surface boundaries being bottlenecks for efflux. To critically test the model, a custom MRI efflux assay measuring solute dispersion in tissue and release to cerebrospinal fluid was employed. The model passed the test with tissue bulk flow velocities in the range 60 to 190 [Formula: see text]m/h. Dimensional analysis identified three principal determinants of efflux, highlighting brain surfaces as a restricting factor for metabolite solute clearance.


Assuntos
Encéfalo , Teorema de Bayes , Encéfalo/metabolismo , Transporte Biológico , Difusão , Cinética
2.
Proc Natl Acad Sci U S A ; 120(40): e2305071120, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37774097

RESUMO

Extracellular potassium concentration ([K+]e) is known to increase as a function of arousal. [K+]e is also a potent modulator of transmitter release. Yet, it is not known whether [K+]e is involved in the neuromodulator release associated with behavioral transitions. We here show that manipulating [K+]e controls the local release of monoaminergic neuromodulators, including norepinephrine (NE), serotonin, and dopamine. Imposing a [K+]e increase is adequate to boost local NE levels, and conversely, lowering [K+]e can attenuate local NE. Electroencephalography analysis and behavioral assays revealed that manipulation of cortical [K+]e was sufficient to alter the sleep-wake cycle and behavior of mice. These observations point to the concept that NE levels in the cortex are not solely determined by subcortical release, but that local [K+]e dynamics have a strong impact on cortical NE. Thus, cortical [K+]e is an underappreciated regulator of behavioral transitions.


Assuntos
Nível de Alerta , Norepinefrina , Camundongos , Animais , Eletroencefalografia , Serotonina , Dopamina
3.
J Neurosci ; 40(11): 2371-2380, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047056

RESUMO

Chronic electroencephalography (EEG) is a widely used tool for monitoring cortical electrical activity in experimental animals. Although chronic implants allow for high-quality, long-term recordings in preclinical studies, the electrodes are foreign objects and might therefore be expected to induce a local inflammatory response. We here analyzed the effects of chronic cranial electrode implantation on glymphatic fluid transport and in provoking structural changes in the meninges and cerebral cortex of male and female mice. Immunohistochemical analysis of brain tissue and dura revealed reactive gliosis in the cortex underlying the electrodes and extensive meningeal lymphangiogenesis in the surrounding dura. Meningeal lymphangiogenesis was also evident in mice prepared with the commonly used chronic cranial window. Glymphatic influx of a CSF tracer was significantly enhanced at 30 d postsurgery in both awake and ketamine-xylazine anesthetized mice with electrodes, supporting the concept that glymphatic influx and intracranial lymphatic drainage are interconnected. Altogether, the experimental results provide clear evidence that chronic implantation of EEG electrodes is associated with significant changes in the brain's fluid transport system. Future studies involving EEG recordings and chronic cranial windows must consider the physiological consequences of cranial implants, which include glial scarring, meningeal lymphangiogenesis, and increased glymphatic activity.SIGNIFICANCE STATEMENT This study shows that implantation of extradural electrodes provokes meningeal lymphangiogenesis, enhanced glymphatic influx of CSF, and reactive gliosis. The analysis based on CSF tracer injection in combination with immunohistochemistry showed that chronically implanted electroencephalography electrodes were surrounded by lymphatic sprouts originating from lymphatic vasculature along the dural sinuses and the middle meningeal artery. Likewise, chronic cranial windows provoked lymphatic sprouting. Tracer influx assessed in coronal slices was increased in agreement with previous reports identifying a close association between glymphatic activity and the meningeal lymphatic vasculature. Lymphangiogenesis in the meninges and altered glymphatic fluid transport after electrode implantation have not previously been described and adds new insights to the foreign body response of the CNS.


Assuntos
Dura-Máter/metabolismo , Eletrodos Implantados/efeitos adversos , Reação a Corpo Estranho/etiologia , Gliose/etiologia , Sistema Glinfático/fisiologia , Linfangiogênese , Animais , Astrócitos/fisiologia , Córtex Cerebral/patologia , Líquido Cefalorraquidiano/fisiologia , Dura-Máter/patologia , Eletroencefalografia/instrumentação , Feminino , Reação a Corpo Estranho/metabolismo , Gliose/metabolismo , Gliose/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Técnica de Janela Cutânea , Fases do Sono/fisiologia
4.
Bio Protoc ; 13(15): e4734, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37575397

RESUMO

Sleep is not homogenous but contains a highly diverse microstructural composition influenced by neuromodulators. Prior methods used to measure neuromodulator levels in vivo have been limited by low time resolution or technical difficulties in achieving recordings in a freely moving setting, which is essential for natural sleep. In this protocol, we demonstrate the combination of electroencephalographic (EEG)/electromyographic (EMG) recordings with fiber photometric measurements of fluorescent biosensors for neuromodulators in freely moving mice. This allows for real-time assessment of extracellular neuromodulator levels during distinct phases of sleep with a high temporal resolution.

5.
Science ; 379(6627): 84-88, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36603070

RESUMO

The central nervous system is lined by meninges, classically known as dura, arachnoid, and pia mater. We show the existence of a fourth meningeal layer that compartmentalizes the subarachnoid space in the mouse and human brain, designated the subarachnoid lymphatic-like membrane (SLYM). SLYM is morpho- and immunophenotypically similar to the mesothelial membrane lining of peripheral organs and body cavities, and it encases blood vessels and harbors immune cells. Functionally, the close apposition of SLYM with the endothelial lining of the meningeal venous sinus permits direct exchange of small solutes between cerebrospinal fluid and venous blood, thus representing the mouse equivalent of the arachnoid granulations. The functional characterization of SLYM provides fundamental insights into brain immune barriers and fluid transport.


Assuntos
Encéfalo , Espaço Subaracnóideo , Animais , Humanos , Camundongos , Dura-Máter/citologia , Dura-Máter/fisiologia , Endotélio/citologia , Endotélio/fisiologia , Espaço Subaracnóideo/citologia , Espaço Subaracnóideo/fisiologia , Epitélio/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/imunologia , Líquido Cefalorraquidiano/fisiologia
6.
J Cereb Blood Flow Metab ; 43(7): 1153-1165, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36809165

RESUMO

The glymphatic system is a brain-wide waste drainage system that promotes cerebrospinal fluid circulation through the brain to remove waste metabolites. Currently, the most common methods for assessing glymphatic function are ex vivo fluorescence microscopy of brain slices, macroscopic cortical imaging, and MRI. While all these methods have been crucial for expanding our understanding of the glymphatic system, new techniques are required to overcome their specific drawbacks. Here, we evaluate SPECT/CT imaging as a tool to assess glymphatic function in different anesthesia-induced brain states using two radiolabeled tracers, [111In]-DTPA and [99mTc]-NanoScan. Using SPECT, we confirmed the existence of brain state-dependent differences in glymphatic flow and we show brain state-dependent differences of CSF flow kinetics and CSF egress to the lymph nodes. We compare SPECT and MRI for imaging glymphatic flow and find that the two imaging modalities show the same overall pattern of CSF flow, but that SPECT was specific across a greater range of tracer concentrations than MRI. Overall, we find that SPECT imaging is a promising tool for imaging the glymphatic system, and that qualities such as high sensitivity and the variety of available tracers make SPECT imaging a good alternative for glymphatic research.


Assuntos
Sistema Glinfático , Ratos , Animais , Encéfalo/irrigação sanguínea , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único
7.
Elife ; 122023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36757363

RESUMO

The glymphatic system is a fluid transport network of cerebrospinal fluid (CSF) entering the brain along arterial perivascular spaces, exchanging with interstitial fluid (ISF), ultimately establishing directional clearance of interstitial solutes. CSF transport is facilitated by the expression of aquaporin-4 (AQP4) water channels on the perivascular endfeet of astrocytes. Mice with genetic deletion of AQP4 (AQP4 KO) exhibit abnormalities in the brain structure and molecular water transport. Yet, no studies have systematically examined how these abnormalities in structure and water transport correlate with glymphatic function. Here, we used high-resolution 3D magnetic resonance (MR) non-contrast cisternography, diffusion-weighted MR imaging (MR-DWI) along with intravoxel-incoherent motion (IVIM) DWI, while evaluating glymphatic function using a standard dynamic contrast-enhanced MR imaging to better understand how water transport and glymphatic function is disrupted after genetic deletion of AQP4. AQP4 KO mice had larger interstitial spaces and total brain volumes resulting in higher water content and reduced CSF space volumes, despite similar CSF production rates and vascular density compared to wildtype mice. The larger interstitial fluid volume likely resulted in increased slow but not fast MR diffusion measures and coincided with reduced glymphatic influx. This markedly altered brain fluid transport in AQP4 KO mice may result from a reduction in glymphatic clearance, leading to enlargement and stagnation of fluid in the interstitial space. Overall, diffusion MR is a useful tool to evaluate glymphatic function and may serve as valuable translational biomarker to study glymphatics in human disease.


Assuntos
Sistema Glinfático , Camundongos , Humanos , Animais , Sistema Glinfático/diagnóstico por imagem , Sistema Glinfático/metabolismo , Líquido Extracelular/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo , Água/metabolismo
8.
Nat Commun ; 14(1): 1871, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015909

RESUMO

Information transfer within neuronal circuits depends on the balance and recurrent activity of excitatory and inhibitory neurotransmission. Chloride (Cl-) is the major central nervous system (CNS) anion mediating inhibitory neurotransmission. Astrocytes are key homoeostatic glial cells populating the CNS, although the role of these cells in regulating excitatory-inhibitory balance remains unexplored. Here we show that astrocytes act as a dynamic Cl- reservoir regulating Cl- homoeostasis in the CNS. We found that intracellular chloride concentration ([Cl-]i) in astrocytes is high and stable during sleep. In awake mice astrocytic [Cl-]i is lower and exhibits large fluctuation in response to both sensory input and motor activity. Optogenetic manipulation of astrocytic [Cl-]i directly modulates neuronal activity during locomotion or whisker stimulation. Astrocytes thus serve as a dynamic source of extracellular Cl- available for GABAergic transmission in awake mice, which represents a mechanism for modulation of the inhibitory tone during sustained neuronal activity.


Assuntos
Astrócitos , Cloretos , Camundongos , Animais , Astrócitos/fisiologia , Transmissão Sináptica , Neuroglia , Encéfalo
9.
Sci Transl Med ; 15(702): eabq3916, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37379370

RESUMO

Inner ear gene therapy has recently effectively restored hearing in neonatal mice, but it is complicated in adulthood by the structural inaccessibility of the cochlea, which is embedded within the temporal bone. Alternative delivery routes may advance auditory research and also prove useful when translated to humans with progressive genetic-mediated hearing loss. Cerebrospinal fluid flow via the glymphatic system is emerging as a new approach for brain-wide drug delivery in rodents as well as humans. The cerebrospinal fluid and the fluid of the inner ear are connected via a bony channel called the cochlear aqueduct, but previous studies have not explored the possibility of delivering gene therapy via the cerebrospinal fluid to restore hearing in adult deaf mice. Here, we showed that the cochlear aqueduct in mice exhibits lymphatic-like characteristics. In vivo time-lapse magnetic resonance imaging, computed tomography, and optical fluorescence microscopy showed that large-particle tracers injected into the cerebrospinal fluid reached the inner ear by dispersive transport via the cochlear aqueduct in adult mice. A single intracisternal injection of adeno-associated virus carrying solute carrier family 17, member 8 (Slc17A8), which encodes vesicular glutamate transporter-3 (VGLUT3), rescued hearing in adult deaf Slc17A8-/- mice by restoring VGLUT3 protein expression in inner hair cells, with minimal ectopic expression in the brain and none in the liver. Our findings demonstrate that cerebrospinal fluid transport comprises an accessible route for gene delivery to the adult inner ear and may represent an important step toward using gene therapy to restore hearing in humans.


Assuntos
Orelha Interna , Adulto , Animais , Humanos , Camundongos , Orelha Interna/patologia , Cóclea , Audição , Terapia Genética/métodos , Técnicas de Transferência de Genes
10.
Nat Neurosci ; 25(8): 1059-1070, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35798980

RESUMO

Sleep has a complex micro-architecture, encompassing micro-arousals, sleep spindles and transitions between sleep stages. Fragmented sleep impairs memory consolidation, whereas spindle-rich and delta-rich non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep promote it. However, the relationship between micro-arousals and memory-promoting aspects of sleep remains unclear. In this study, we used fiber photometry in mice to examine how release of the arousal mediator norepinephrine (NE) shapes sleep micro-architecture. Here we show that micro-arousals are generated in a periodic pattern during NREM sleep, riding on the peak of locus-coeruleus-generated infraslow oscillations of extracellular NE, whereas descending phases of NE oscillations drive spindles. The amplitude of NE oscillations is crucial for shaping sleep micro-architecture related to memory performance: prolonged descent of NE promotes spindle-enriched intermediate state and REM sleep but also associates with awakenings, whereas shorter NE descents uphold NREM sleep and micro-arousals. Thus, the NE oscillatory amplitude may be a target for improving sleep in sleep disorders.


Assuntos
Norepinefrina , Sono , Animais , Nível de Alerta , Eletroencefalografia , Camundongos , Fases do Sono , Sono REM
11.
iScience ; 25(10): 105250, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36274948

RESUMO

Intrathecal administration enables central nervous system delivery of drugs that do not bypass the blood-brain barrier. Systemic administration of hypertonic saline (HTS) enhances delivery of intrathecal therapeutics into the neuropil, but its effect on solute clearance from the brain remains unknown. Here, we developed a dynamic in vivo single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging platform to study the effects of HTS on whole-body distribution of the radiolabeled tracer 99mTc-diethylenetriaminepentaacetic acid (DTPA) administered through intracisternal, intrastriatal, or intravenous route in anesthetized rats. Co-administration of systemic HTS increased intracranial exposure to intracisternal 99mTc-DTPA by ∼80% during imaging. In contrast, HTS had minimal effects on brain clearance of intrastriatal 99mTc-DTPA. In sum, SPECT/CT imaging presents a valuable approach to study glymphatic drug delivery. Using this methodology, we show that systemic HTS increases intracranial availability of cerebrospinal fluid-administered tracer, but has marginal effects on brain clearance, thus substantiating a simple, yet effective strategy for enhancing intrathecal drug delivery to the brain.

12.
Sci Rep ; 11(1): 8150, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854148

RESUMO

Cortical spreading depolarization (CSD) is a propagating wave of tissue depolarization characterized by a large increase of extracellular potassium concentration and prolonged subsequent electrical silencing of neurons. Waves of CSD arise spontaneously in various acute neurological settings, including migraine aura and ischemic stroke. Recently, we have reported that pan-inhibition of adrenergic receptors (AdRs) facilitates the normalization of extracellular potassium after acute photothrombotic stroke in mice. Here, we have extended that mechanistic study to ask whether AdR antagonists also modify the dynamics of KCl-induced CSD and post-CSD recovery in vivo. Spontaneous neural activity and KCl-induced CSD were visualized by cortex-wide transcranial Ca2+ imaging in G-CaMP7 transgenic mice. AdR antagonism decreased the recurrence of CSD waves and accelerated the post-CSD recovery of neural activity. Two-photon imaging revealed that astrocytes exhibited aberrant Ca2+ signaling after passage of the CSD wave. This astrocytic Ca2+ activity was diminished by the AdR antagonists. Furthermore, AdR pan-antagonism facilitated the normalization of the extracellular potassium level after CSD, which paralleled the recovery of neural activity. These observations add support to the proposal that neuroprotective effects of AdR pan-antagonism arise from accelerated normalization of extracellular K+ levels in the setting of acute brain injury.


Assuntos
Antagonistas Adrenérgicos/administração & dosagem , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Cloreto de Potássio/efeitos adversos , AVC Trombótico/tratamento farmacológico , Antagonistas Adrenérgicos/farmacologia , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Cloreto de Potássio/farmacologia , Recuperação de Função Fisiológica , AVC Trombótico/etiologia , AVC Trombótico/metabolismo , AVC Trombótico/fisiopatologia
13.
J Control Release ; 304: 29-38, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31067483

RESUMO

Drug delivery to the central nervous system remains a major problem due to biological barriers. The blood-brain-barrier can be bypassed by administering drugs intrathecally directly to the cerebrospinal fluid (CSF). The glymphatic system, a network of perivascular spaces promoting fluid exchange between CSF and interstitial space, could be utilized to enhance convective drug delivery from the CSF to the parenchyma. Glymphatic flow is highest during sleep and anesthesia regimens that induce a slow-wave sleep-like state. Here, using mass spectrometry and fluorescent imaging techniques, we show that the clinically used α2-adrenergic agonist dexmedetomidine that enhances EEG slow-wave activity, increases brain and spinal cord drug exposure of intrathecally administered drugs in mice and rats. Using oxycodone, naloxone, and an IgG-sized antibody as relevant model drugs we demonstrate that modulation of glymphatic flow has a distinct impact on the distribution of intrathecally administered therapeutics. These findings can be exploited in the clinic to improve the efficacy and safety of intrathecally administered therapeutics.


Assuntos
Encéfalo/metabolismo , Dexmedetomidina/administração & dosagem , Sistemas de Liberação de Medicamentos , Sistema Glinfático/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos alfa 2/administração & dosagem , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Anticorpos/administração & dosagem , Anticorpos/metabolismo , Dexmedetomidina/farmacologia , Sistema Glinfático/metabolismo , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naloxona/administração & dosagem , Naloxona/farmacocinética , Oxicodona/administração & dosagem , Oxicodona/farmacocinética , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
15.
J Vis Exp ; (135)2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29889209

RESUMO

Cisterna magna cannulation (CMc) is a straightforward procedure that enables direct access to the cerebrospinal fluid (CSF) without operative damage to the skull or the brain parenchyma. In anesthetized rodents, the exposure of the dura mater by blunt dissection of the neck muscles allows the insertion of a cannula into the cisterna magna (CM). The cannula, composed either by a fine beveled needle or borosilicate capillary, is attached via a polyethylene (PE) tube to a syringe. Using a syringe pump, molecules can then be injected at controlled rates directly into the CM, which is continuous with the subarachnoid space. From the subarachnoid space, we can trace CSF fluxes by convective flow into the perivascular space around penetrating arterioles, where solute exchange with the interstitial fluid (ISF) occurs. CMc can be performed for acute injections immediately following the surgery, or for chronic implantation, with later injection in anesthetized or awake, freely moving rodents. Quantitation of tracer distribution in the brain parenchyma can be performed by epifluorescence, 2-photon microscopy, and magnetic resonance imaging (MRI), depending on the physico-chemical properties of the injected molecules. Thus, CMc in conjunction with various imaging techniques offers a powerful tool for assessment of the glymphatic system and CSF dynamics and function. Furthermore, CMc can be utilized as a conduit for fast, brain-wide delivery of signaling molecules and metabolic substrates that could not otherwise cross the blood brain barrier (BBB).


Assuntos
Encéfalo/cirurgia , Cânula/estatística & dados numéricos , Cateterismo/métodos , Cisterna Magna/cirurgia , Animais , Encéfalo/patologia , Camundongos , Roedores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA