Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Toxicol ; 96(2): 673-687, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34921608

RESUMO

Breast cancer etiology is associated with both proliferation and DNA damage induced by estrogens. Breast cancer risk factors (BCRF) such as body mass index (BMI), smoking, and intake of estrogen-active drugs were recently shown to influence intratissue estrogen levels. Thus, the aim of the present study was to investigate the influence of BCRF on estrogen-induced proliferation and DNA damage in 41 well-characterized breast glandular tissues derived from women without breast cancer. Influence of intramammary estrogen levels and BCRF on estrogen receptor (ESR) activation, ESR-related proliferation (indicated by levels of marker transcripts), oxidative stress (indicated by levels of GCLC transcript and oxidative derivatives of cholesterol), and levels of transcripts encoding enzymes involved in estrogen biotransformation was identified by multiple linear regression models. Metabolic fluxes to adducts of estrogens with DNA (E-DNA) were assessed by a metabolic network model (MNM) which was validated by comparison of calculated fluxes with data on methoxylated and glucuronidated estrogens determined by GC- and UHPLC-MS/MS. Intratissue estrogen levels significantly influenced ESR activation and fluxes to E-DNA within the MNM. Likewise, all BCRF directly and/or indirectly influenced ESR activation, proliferation, and key flux constraints influencing E-DNA (i.e., levels of estrogens, CYP1B1, SULT1A1, SULT1A2, and GSTP1). However, no unambiguous total effect of BCRF on proliferation became apparent. Furthermore, BMI was the only BCRF to indeed influence fluxes to E-DNA (via congruent adverse influence on levels of estrogens, CYP1B1 and SULT1A2).


Assuntos
Neoplasias da Mama/metabolismo , Dano ao DNA , Estrogênios/metabolismo , Glândulas Mamárias Humanas/metabolismo , Adulto , Arilsulfotransferase/metabolismo , Índice de Massa Corporal , Neoplasias da Mama/etiologia , Proliferação de Células/fisiologia , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP1B1/metabolismo , Feminino , Humanos , Glândulas Mamárias Humanas/patologia , Estresse Oxidativo/fisiologia , Fatores de Risco , Espectrometria de Massas em Tandem
2.
Arch Toxicol ; 94(9): 3013-3025, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32572548

RESUMO

Understanding intramammary estrogen homeostasis constitutes the basis of understanding the role of lifestyle factors in breast cancer etiology. Thus, the aim of the present study was to identify variables influencing levels of the estrogens present in normal breast glandular and adipose tissues (GLT and ADT, i.e., 17ß-estradiol, estrone, estrone-3-sulfate, and 2-methoxy-estrone) by multiple linear regression models. Explanatory variables (exVARs) considered were (a) levels of metabolic precursors as well as levels of transcripts encoding proteins involved in estrogen (biotrans)formation, (b) data on breast cancer risk factors (i.e., body mass index, BMI, intake of estrogen-active drugs, and smoking) collected by questionnaire, and (c) tissue characteristics (i.e., mass percentage of oil, oil%, and lobule type of the GLT). Levels of estrogens in GLT and ADT were influenced by both extramammary production (menopausal status, intake of estrogen-active drugs, and BMI) thus showing that variables known to affect levels of circulating estrogens influence estrogen levels in breast tissues as well for the first time. Moreover, intratissue (biotrans)formation (by aromatase, hydroxysteroid-17beta-dehydrogenase 2, and beta-glucuronidase) influenced intratissue estrogen levels, as well. Distinct differences were observed between the exVARs exhibiting significant influence on (a) levels of specific estrogens and (b) the same dependent variables in GLT and ADT. Since oil% and lobule type of GLT influenced levels of some estrogens, these variables may be included in tissue characterization to prevent sample bias. In conclusion, evidence for the intracrine activity of the human breast supports biotransformation-based strategies for breast cancer prevention. The susceptibility of estrogen homeostasis to systemic and tissue-specific modulation renders both beneficial and adverse effects of further variables associated with lifestyle and the environment possible.


Assuntos
Biotransformação/fisiologia , Neoplasias da Mama , Mama/metabolismo , Estrogênios/metabolismo , 17-Hidroxiesteroide Desidrogenases , Aromatase/metabolismo , Estradiol , Estrona/análogos & derivados , Estrona/metabolismo , Homeostase , Humanos , Fatores de Risco
3.
Arch Toxicol ; 93(10): 2823-2833, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31489452

RESUMO

Because of its assumed role in breast cancer etiology, estrogen biotransformation (and interaction of compounds therewith) has been investigated in human biospecimens for decades. However, little attention has been paid to the well-known fact that large inter-individual variations exist in the proportion of breast glandular (GLT) and adipose (ADT) tissues and less to adequate tissue characterization. To assess the relevance of this, the present study compares estrogen biotransformation in GLT and ADT. GLT and ADT were isolated from 47 reduction mammoplasty specimens derived from women without breast cancer and were characterized histologically and by their percentages of oil. Levels of 12 unconjugated and five conjugated estrogens were analyzed by GC- and UHPLC-MS/MS, respectively, and levels of 27 transcripts encoding proteins involved in estrogen biotransformation by Taqman® probe-based PCR. Unexpectedly, one-third of specimens provided neat GLT only after cryosection. Whereas 17ß-estradiol, estrone, and estrone-3-sulfate were detected in both tissues, estrone-3-glucuronide and 2-methoxy-estrone were detected predominately in GLT and ADT, respectively. Estrogen levels as well as ratios 17ß-estradiol/estrone and estrone-3-sulfate/estrone differed significantly between GLT and ADT, yet less than between individuals. Furthermore, estrogen levels in GLT and ADT correlated significantly with each other. In contrast, levels of most transcripts encoding enzymes involved in biotransformation differed more than between individuals and did not correlate between ADT and GLT. Thus, mixed breast tissues (and plasma) will not provide meaningful information on local estrogen biotransformation (and interaction of compounds therewith) whereas relative changes in 17ß-estradiol levels may be investigated in the more abundant ADT.


Assuntos
Tecido Adiposo/metabolismo , Mama/metabolismo , Estradiol/metabolismo , Estrogênios/metabolismo , Adolescente , Adulto , Idoso , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem , Adulto Jovem
4.
Arch Toxicol ; 93(7): 1979-1992, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31119341

RESUMO

Despite being widely used to investigate 17ß-estradiol (E2)-induced mammary gland (MG) carcinogenesis and prevention thereof, estrogen homeostasis and its significance in the female August Copenhagen Irish (ACI) rat model is unknown. Thus, levels of 12 estrogens including metabolites and conjugates were determined mass spectrometrically in 38 plasmas and 52 tissues exhibiting phenotypes ranging from normal to palpable tumor derived from a representative ACI study using two different diets. In tissues, 40 transcripts encoding proteins involved in estrogen (biotrans)formation, ESR1-mediated signaling, proliferation and oxidative stress were analyzed (TaqMan PCR). Influence of histo(patho)logic phenotypes and diet on estrogen and transcript levels was analyzed by 2-way ANOVA and explanatory variables influencing levels and bioactivity of estrogens in tissues were identified by multiple linear regression models. Estrogen profiles in tissue and plasma and the influence of Hsd17b1 levels on intra-tissue levels of E2 and E1 conclusively indicated intra-mammary formation of E2 in ACI tumors by HSD17B1-mediated conversion of E1. Proliferation in ACI tumors was influenced by Egfr, Igf1r, Hgf and Met levels. 2-MeO-E1, the only oxidative estrogen metabolite detected above 28-42 fmol/g, was predominately observed in hyperplastic tissues and intra-tissue conversion of E1 seemed to contribute to its levels. The association of the occurrence of 2-MeO-E1 with higher levels of oxidative stress observed in hyperplastic and tumor tissues remained equivocal. Thus, the present study provides mechanistic explanation for previous and future results observed in the ACI model.


Assuntos
Estradiol/toxicidade , Estrogênios/toxicidade , Neoplasias Mamárias Experimentais/patologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Dieta , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Feminino , Espectrometria de Massas , Ratos , Ratos Endogâmicos ACI
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA