Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 16(10): e1008718, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33045005

RESUMO

The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located near NEDD4L and SLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (Rg ranging from 0.11 to 0.76, P-values <0.002). A negative genetic correlation of childhood BMI with age at menarche was observed. Our results suggest that the biological processes underlying childhood BMI largely, but not completely, overlap with those underlying adult BMI. The well-known observational associations of BMI in childhood with cardio-metabolic diseases in adulthood may reflect partial genetic overlap, but in light of previous evidence, it is also likely that they are explained through phenotypic continuity of BMI from childhood into adulthood.


Assuntos
Doenças Cardiovasculares/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Proteínas de Transporte de Monossacarídeos/genética , Ubiquitina-Proteína Ligases Nedd4/genética , Adolescente , Adulto , Pressão Sanguínea , Índice de Massa Corporal , Fatores de Risco Cardiometabólico , Doenças Cardiovasculares/patologia , Criança , Pré-Escolar , Diabetes Mellitus Tipo 2/patologia , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Menarca/genética , Análise da Randomização Mendeliana , Relação Cintura-Quadril
2.
Nature ; 538(7624): 248-252, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27680694

RESUMO

Birth weight (BW) has been shown to be influenced by both fetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease. These life-course associations have often been attributed to the impact of an adverse early life environment. Here, we performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where fetal genotype was associated with BW (P < 5 × 10-8). Overall, approximately 15% of variance in BW was captured by assays of fetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (Rg = -0.22, P = 5.5 × 10-13), T2D (Rg = -0.27, P = 1.1 × 10-6) and coronary artery disease (Rg = -0.30, P = 6.5 × 10-9). In addition, using large -cohort datasets, we demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P = 1.9 × 10-4). We demonstrate that life-course associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and identify some of the pathways through which these causal genetic effects are mediated.


Assuntos
Envelhecimento/genética , Peso ao Nascer/genética , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/genética , Feto/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Adulto , Antropometria , Pressão Sanguínea/genética , Montagem e Desmontagem da Cromatina , Estudos de Coortes , Conjuntos de Dados como Assunto , Feminino , Loci Gênicos/genética , Variação Genética/genética , Impressão Genômica/genética , Genótipo , Glucose/metabolismo , Glicogênio/biossíntese , Humanos , Insulina/metabolismo , Masculino , Fenótipo , Transdução de Sinais
3.
Hum Mol Genet ; 28(19): 3327-3338, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504550

RESUMO

Although hundreds of genome-wide association studies-implicated loci have been reported for adult obesity-related traits, less is known about the genetics specific for early-onset obesity and with only a few studies conducted in non-European populations to date. Searching for additional genetic variants associated with childhood obesity, we performed a trans-ancestral meta-analysis of 30 studies consisting of up to 13 005 cases (≥95th percentile of body mass index (BMI) achieved 2-18 years old) and 15 599 controls (consistently <50th percentile of BMI) of European, African, North/South American and East Asian ancestry. Suggestive loci were taken forward for replication in a sample of 1888 cases and 4689 controls from seven cohorts of European and North/South American ancestry. In addition to observing 18 previously implicated BMI or obesity loci, for both early and late onset, we uncovered one completely novel locus in this trans-ancestral analysis (nearest gene, METTL15). The variant was nominally associated with only the European subgroup analysis but had a consistent direction of effect in other ethnicities. We then utilized trans-ancestral Bayesian analysis to narrow down the location of the probable causal variant at each genome-wide significant signal. Of all the fine-mapped loci, we were able to narrow down the causative variant at four known loci to fewer than 10 single nucleotide polymorphisms (SNPs) (FAIM2, GNPDA2, MC4R and SEC16B loci). In conclusion, an ethnically diverse setting has enabled us to both identify an additional pediatric obesity locus and further fine-map existing loci.


Assuntos
Mapeamento Cromossômico/métodos , Estudo de Associação Genômica Ampla/métodos , Obesidade Infantil/genética , Polimorfismo de Nucleotídeo Único , Tumor de Wilms/genética , Teorema de Bayes , Estudos de Casos e Controles , Criança , Feminino , Loci Gênicos , Predisposição Genética para Doença , Humanos , Masculino
4.
Diabetologia ; 60(5): 873-878, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28184960

RESUMO

AIMS/HYPOTHESIS: Fasting plasma levels of branched-chain amino acids (BCAAs) are associated with insulin resistance, but it remains unclear whether there is a causal relation between the two. We aimed to disentangle the causal relations by performing a Mendelian randomisation study using genetic variants associated with circulating BCAA levels and insulin resistance as instrumental variables. METHODS: We measured circulating BCAA levels in blood plasma by NMR spectroscopy in 1,321 individuals from the ADDITION-PRO cohort. We complemented our analyses by using previously published genome-wide association study (GWAS) results from the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) (n = 46,186) and from a GWAS of serum BCAA levels (n = 24,925). We used a genetic risk score (GRS), calculated using ten established fasting serum insulin associated variants, as an instrumental variable for insulin resistance. A GRS of three variants increasing circulating BCAA levels was used as an instrumental variable for circulating BCAA levels. RESULTS: Fasting plasma BCAA levels were associated with higher HOMA-IR in ADDITION-PRO (ß 0.137 [95% CI 0.08, 0.19] p = 6 × 10-7). However, the GRS for circulating BCAA levels was not associated with fasting insulin levels or HOMA-IR in ADDITION-PRO (ß -0.011 [95% CI -0.053, 0.032] p = 0.6 and ß -0.011 [95% CI -0.054, 0.031] p = 0.6, respectively) or in GWAS results for HOMA-IR from MAGIC (ß for valine-increasing GRS -0.012 [95% CI -0.069, 0.045] p = 0.7). By contrast, the insulin-resistance-increasing GRS was significantly associated with increased BCAA levels in ADDITION-PRO (ß 0.027 [95% CI 0.005, 0.048] p = 0.01) and in GWAS results for serum BCAA levels (ß 1.22 [95% CI 0.71, 1.73] p = 4 × 10-6, ß 0.96 [95% CI 0.45, 1.47] p = 3 × 10-4, and ß 0.67 [95% CI 0.16, 1.18] p = 0.01 for isoleucine, leucine and valine levels, respectively) and instrumental variable analyses in ADDITION-PRO indicated that HOMA-IR is causally related to higher circulating fasting BCAA levels (ß 0.73 [95% CI 0.26, 1.19] p = 0.002). CONCLUSIONS/INTERPRETATION: Our results suggest that higher BCAA levels do not have a causal effect on insulin resistance while increased insulin resistance drives higher circulating fasting BCAA levels.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Resistência à Insulina/fisiologia , Idoso , Aminoácidos de Cadeia Ramificada/metabolismo , Glicemia/metabolismo , Jejum/sangue , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Insulina/sangue , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade
5.
Genet Med ; 19(5): 521-528, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27711072

RESUMO

PURPOSE: We investigated whether Brugada syndrome (BrS)-associated variants identified in the general population have an effect on J-point elevation as well as whether carriers of BrS variants were more prone to experience syncope and malignant ventricular arrhythmia and had increased mortality compared with noncarriers. METHODS: All BrS-associated variants were identified using the Human Gene Mutation Database (HGMD). Individuals were randomly selected from a general population study using whole-exome sequencing data (n = 870) and genotype array data (n = 6,161) and screened for BrS-associated variants. Electrocardiograms (ECG) were analyzed electronically, and data on syncope, ventricular arrhythmias, and mortality were obtained from administrative health-care registries. RESULTS: In HGMD, 382 BrS-associated genetic variants were identified. Of these, 28 variants were identified in the study cohort. None of the carriers presented with type 1 BrS ECG pattern. Mean J-point elevation in V1 and V2 were within normal guideline limits for carriers and noncarriers. There was no difference in syncope susceptibility (carriers 8/624; noncarriers 98/5,562; P = 0.51), ventricular arrhythmia (carriers 4/620; noncarriers 9/5,524; P = 0.24), or overall mortality (hazard ratio 0.93, 95% CI 0.63-1.4). CONCLUSIONS: Our data indicate that a significant number of BrS-associated variants are not the monogenic cause of BrS.Genet Med advance online publication 06 October 2016.


Assuntos
Arritmias Cardíacas/epidemiologia , Síndrome de Brugada/genética , Síndrome de Brugada/mortalidade , Variação Genética , Coração/fisiopatologia , Síncope/epidemiologia , Adulto , Arritmias Cardíacas/etiologia , Síndrome de Brugada/complicações , Síndrome de Brugada/fisiopatologia , Dinamarca/epidemiologia , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Distribuição Aleatória , Sistema de Registros , Síncope/etiologia , Sequenciamento do Exoma/métodos
6.
medRxiv ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37090505

RESUMO

Patients with type 2 diabetes vary in their response to currently available therapeutic agents (including GLP-1 receptor agonists) leading to suboptimal glycemic control and increased risk of complications. We show that human carriers of hypomorphic T2D-risk alleles in the gene encoding peptidyl-glycine alpha-amidating monooxygenase (PAM), as well as Pam-knockout mice, display increased resistance to GLP-1 in vivo. Pam inactivation in mice leads to reduced gastric GLP-1R expression and faster gastric emptying: this persists during GLP-1R agonist treatment and is rescued when GLP-1R activity is antagonized, indicating resistance to GLP-1's gastric slowing properties. Meta-analysis of human data from studies examining GLP-1R agonist response (including RCTs) reveals a relative loss of 44% and 20% of glucose lowering (measured by glycated hemoglobin) in individuals with hypomorphic PAM alleles p.S539W and p.D536G treated with GLP-1R agonist. Genetic variation in PAM has effects on incretin signaling that alters response to medication used commonly for treatment of T2D.

7.
Diabetes Res Clin Pract ; 194: 110159, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36400171

RESUMO

AIMS: Rare variants in the glucokinase gene (GCK) cause Maturity-Onset Diabetes of the Young (MODY2/GCK-MODY). We investigated the prevalence of GCK variants, phenotypic characteristics, micro- and macrovascular disease at baseline and follow-up, and treatment among individuals with and without pathogenic GCK variants. METHODS: This is a cross-sectional study in a population-based cohort of 5,433 individuals without diabetes (Inter99 cohort) and in 2,855 patients with a new clinical diagnosis of type 2 diabetes (DD2 cohort) with sequencing of GCK. Phenotypic characteristics, presence of micro- and macrovascular disease and treatment information were available for patients in the DD2 cohort at baseline and after an average follow-up of 7.4 years. RESULTS: Twenty-two carriers of potentially deleterious GCK variants were found among patients with type 2 diabetes compared to three among 5,433 nondiabetic individuals [OR = 14.1 (95 % CI 4.2; 47.0), p = 8.9*10-6]. Patients with type 2 diabetes carrying GCK variants had significantly lower waist circumference, hip circumference and BMI, compared to non-carriers. Three GCK variant carriers with diabetes had microvascular complications during follow-up. CONCLUSIONS: Approximately 0.8% of Danish patients with newly diagnosed type 2 diabetes carry non-synonymous variants in GCK and resemble patients with GCK-MODY. Glucose-lowering treatment cessation should be considered in this subset of diabetes patients.


Assuntos
Diabetes Mellitus Tipo 2 , Glucoquinase , Humanos , Estudos Transversais , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Glucoquinase/genética , Heterozigoto , Mutação , Dinamarca
8.
Cell Rep Med ; 1(1): 100006, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33205056

RESUMO

Individuals with obesity due to pathogenic heterozygous melanocortin 4 receptor (MC4R) mutations can be treated efficiently with the glucagon-like peptide-1 receptor agonist (GLP-1 RA) liraglutide. Here, we report the effect of 16 weeks of liraglutide 3 mg/day treatment in a woman with morbid obesity and type 2 diabetes (T2D) due to homozygous pathogenic MC4R mutation. The body weight loss was 9.7 kg, similar to weight loss in heterozygous MC4R mutation carriers and common obesity. In addition, the treatment led to clinically relevant decreases in fasting glucose, triglycerides, systolic blood pressure, and normalization of glucose tolerance. We conclude that liraglutide reduces body weight and blood glucose levels in hetero- and homozygous MC4R mutation carriers. This serves as proof-of-concept that MC4Rs are not required for the body weight and glucose lowering effects of GLP-1 RAs and that liraglutide may be used as part of the treatment of obesity and T2D due to MC4R mutations.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Liraglutida/uso terapêutico , Obesidade Mórbida/tratamento farmacológico , Receptor Tipo 4 de Melanocortina/genética , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Dinamarca , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Homozigoto , Humanos , Pessoa de Meia-Idade , Mutação , Obesidade Mórbida/complicações , Obesidade Mórbida/genética , Redução de Peso/efeitos dos fármacos
9.
Sci Rep ; 10(1): 4806, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179833

RESUMO

Overweight in children is strongly associated with parental body mass index (BMI) and overweight. We assessed parental transmitted and non-transmitted genetic contributions to overweight in children from the Danish National Birth Cohort by constructing genetic risk scores (GRSs) from 941 common genetic variants associated with adult BMI and estimating associations of transmitted maternal/paternal and non-transmitted maternal GRS with child overweight. Maternal and paternal BMI (standard deviation (SD) units) had a strong association with childhood overweight [Odds ratio (OR): 2.01 (95% confidence interval (CI) 1.74; 2.34) and 1.64 (95% CI 1.43; 1.89)]. Maternal and paternal transmitted GRSs (SD-units) increased odds for child overweight equally [OR: 1.30 (95% CI 1.16; 1.46) and 1.30 (95% CI 1.16; 1.47)]. However, both the parental phenotypic and the GRS associations may depend on maternal BMI, being weaker among mothers with overweight. Maternal non-transmitted GRS was not associated with child overweight [OR 0.98 (95% CI 0.88; 1.10)] suggesting no specific influence of maternal adiposity as such. In conclusion, parental transmitted GRSs, based on adult BMI, contribute to child overweight, but in overweight mothers other genetic and environmental factors may play a greater role.


Assuntos
Alelos , Índice de Massa Corporal , Estudos de Associação Genética , Pais , Obesidade Infantil/genética , Adiposidade/genética , Criança , Estudos de Coortes , Feminino , Interação Gene-Ambiente , Humanos , Masculino , Obesidade Infantil/etiologia , Risco
10.
Nat Genet ; 51(5): 804-814, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043758

RESUMO

Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.


Assuntos
Peso ao Nascer/genética , Adulto , Pressão Sanguínea/genética , Estatura/genética , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/genética , Feminino , Desenvolvimento Fetal/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Cardiopatias/etiologia , Cardiopatias/genética , Humanos , Recém-Nascido , Masculino , Herança Materna/genética , Troca Materno-Fetal/genética , Doenças Metabólicas/etiologia , Doenças Metabólicas/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Gravidez , Fatores de Risco
11.
Front Physiol ; 9: 894, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042696

RESUMO

Introduction: A previous genome-wide association study found three genetic loci, rs9388451, rs10428132, and rs11708996, to increase the risk of Brugada Syndrome (BrS). Since the effect of these loci in the general population is unknown, we aimed to investigate the effect on electrocardiogram (ECG) parameters and outcomes in the general population. Materials and Methods: A cohort of 6,161 individuals (median age 45 [interquartile range (IQR) 40-50] years, 49% males), with available digital ECGs, was genotyped and subsequently followed for a median period of 13 [IQR 12.6-13.4] years. Data on outcomes were collected from Danish administrative healthcare registries. Furthermore, ~400,000 persons from UK Biobank were investigated for associations between the three loci and cardiac arrest/ventricular fibrillation (VF). Results: Homozygote carriers of the C allele in rs6800541 intronic to SCN10A had a significantly larger J-point elevation (JPE) compared with wildtype carriers (11 vs. 6 µV, P < 0.001). There was an additive effect of carrying multiple BrS-associated risk alleles with an increased JPE in lead V1. None of the BrS-associated genetic loci predisposed to syncope, atrial fibrillation, or total mortality in the general Danish population. The rs9388451 genetic locus adjacent to the HEY2 gene was associated with cardiac arrest/VF in an analysis using the UK Biobank study (odds ratio = 1.13 (95% confidence interval: 1.08-1.18), P = 0.006). Conclusions: BrS-associated risk alleles increase the JPE in lead V1 in an additive manner, but was not associated with increased mortality or syncope in the general population of Denmark. However, the HEY2 risk allele increased the risk of cardiac arrest/VF in the larger population study of UK Biobank indicating an important role of this common genetic locus.

12.
Obesity (Silver Spring) ; 26(12): 1915-1922, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30460774

RESUMO

OBJECTIVE: This study aimed to investigate the effect of a genetic risk score (GRS) comprising 15 single-nucleotide polymorphisms, previously shown to associate with childhood BMI, on the baseline cardiometabolic traits and the response to a lifestyle intervention in Danish children and adolescents. METHODS: Children and adolescents with overweight or obesity (n = 920) and a population-based control sample (n = 698) were recruited. Anthropometric and biochemical measures were obtained at baseline and in a subgroup of children and adolescents with overweight or obesity again after 6 to 24 months of lifestyle intervention (n = 754). The effects of the GRS were examined by multiple linear regressions using additive genetic models. RESULTS: At baseline, the GRS associated with BMI standard deviation score (SDS) both in children and adolescents with overweight or obesity (ß = 0.033 [SE = 0.01]; P = 0.001) and in the population-based sample (ß = 0.065 [SE = 0.02]; P = 0.001). No associations were observed for cardiometabolic traits. The GRS did not influence changes in BMI SDS or cardiometabolic traits following lifestyle intervention. CONCLUSIONS: A GRS for childhood BMI was associated with BMI SDS but not with other cardiometabolic traits in Danish children and adolescents. The GRS did not influence treatment response following lifestyle intervention.


Assuntos
Índice de Massa Corporal , Predisposição Genética para Doença/genética , Obesidade/terapia , Polimorfismo de Nucleotídeo Único/genética , Redução de Peso/genética , Adolescente , Criança , Dinamarca , Feminino , Humanos , Estilo de Vida , Masculino
13.
Circ Cardiovasc Genet ; 10(5)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29030403

RESUMO

BACKGROUND: Genome-wide association studies have recently identified >400 loci that harbor DNA sequence variants that influence blood pressure (BP). Our earlier studies identified and validated 56 single nucleotide variants (SNVs) associated with BP from meta-analyses of exome chip genotype data. An additional 100 variants yielded suggestive evidence of association. METHODS AND RESULTS: Here, we augment the sample with 140 886 European individuals from the UK Biobank, in whom 77 of the 100 suggestive SNVs were available for association analysis with systolic BP or diastolic BP or pulse pressure. We performed 2 meta-analyses, one in individuals of European, South Asian, African, and Hispanic descent (pan-ancestry, ≈475 000), and the other in the subset of individuals of European descent (≈423 000). Twenty-one SNVs were genome-wide significant (P<5×10-8) for BP, of which 4 are new BP loci: rs9678851 (missense, SLC4A1AP), rs7437940 (AFAP1), rs13303 (missense, STAB1), and rs1055144 (7p15.2). In addition, we identified a potentially independent novel BP-associated SNV, rs3416322 (missense, SYNPO2L) at a known locus, uncorrelated with the previously reported SNVs. Two SNVs are associated with expression levels of nearby genes, and SNVs at 3 loci are associated with other traits. One SNV with a minor allele frequency <0.01, (rs3025380 at DBH) was genome-wide significant. CONCLUSIONS: We report 4 novel loci associated with BP regulation, and 1 independent variant at an established BP locus. This analysis highlights several candidate genes with variation that alter protein function or gene expression for potential follow-up.


Assuntos
Pressão Sanguínea/genética , Loci Gênicos , Antiporters/genética , Moléculas de Adesão Celular Neuronais/genética , Bases de Dados Factuais , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Proteínas dos Microfilamentos/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptores de Retorno de Linfócitos/genética
14.
PLoS One ; 11(11): e0166738, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27846319

RESUMO

OBJECTIVES: It has long been discussed whether fitness or fatness is a more important determinant of health status. If the same genetic factors that promote body fat percentage (body fat%) are related to cardiorespiratory fitness (CRF), part of the concurrent associations with health outcomes could reflect a common genetic origin. In this study we aimed to 1) examine genetic correlations between body fat% and CRF; 2) determine whether CRF can be attributed to a genetic risk score (GRS) based on known body fat% increasing loci; and 3) examine whether the fat mass and obesity associated (FTO) locus associates with CRF. METHODS: Genetic correlations based on pedigree information were examined in a family based cohort (n = 230 from 55 families). For the genetic association analyses, we examined two Danish population-based cohorts (ntotal = 3206). The body fat% GRS was created by summing the alleles of twelve independent risk variants known to associate with body fat%. We assessed CRF as maximal oxygen uptake expressed in millilitres of oxygen uptake per kg of body mass (VO2max), per kg fat-free mass (VO2maxFFM), or per kg fat mass (VO2maxFM). All analyses were adjusted for age and sex, and when relevant, for body composition. RESULTS: We found a significant negative genetic correlation between VO2max and body fat% (ρG = -0.72 (SE ±0.13)). The body fat% GRS associated with decreased VO2max (ß = -0.15 mL/kg/min per allele, p = 0.0034, age and sex adjusted). The body fat%-increasing FTO allele was associated with a 0.42 mL/kg/min unit decrease in VO2max per allele (p = 0.0092, age and sex adjusted). Both associations were abolished after additional adjustment for body fat%. The fat% increasing GRS and FTO risk allele were associated with decreased VO2maxFM but not with VO2maxFFM. CONCLUSIONS: Our findings suggest a shared genetic etiology between whole body fat% and CRF.


Assuntos
Tecido Adiposo , Composição Corporal/genética , Aptidão Cardiorrespiratória , Obesidade/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Adulto , Índice de Massa Corporal , Peso Corporal , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Obesidade/fisiopatologia , Consumo de Oxigênio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA