Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Macromol Rapid Commun ; 42(10): e2100008, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33851464

RESUMO

A novel method is demonstrated to encapsulate titanium dioxide pigment using directed polymerization-induced self-assembly (PISA) with reversible addition-fragmentation chain-transfer (RAFT) controlled emulsion polymerization. The polymerization is carried out in a batch process in which both styrene (Sty) and the pigment are emulsified using triblock amphiphilic macro-RAFT copolymers as stabilizers. RAFT-controlled chain growth leads to directed lamellar self-assembly, forming polystyrene (PS) shells' encapsulating pigment particles with 100% efficiency. The pigment resides either at centers of single-void vesicles or within the interior of multivoid vesiculated particles. The presence of complex morphologies such as spherical particles, nanofibers, nanoplatelets, and polymer vesicles confirms the PISA pathway. The process is optimized to preferably produce polymer-vesiculated pigment for use as an enhanced opacifier in water-based paint.


Assuntos
Polímeros , Poliestirenos , Emulsões , Pintura , Polimerização
2.
Blood ; 130(23): 2453-2462, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29074499

RESUMO

Clot retraction refers to the process whereby activated platelets transduce contractile forces onto the fibrin network of a thrombus, which over time increases clot density and decreases clot size. This process is considered important for promoting clot stability and maintaining blood vessel patency. Insights into the mechanisms regulating clot retraction at sites of vascular injury have been hampered by a paucity of in vivo experimental models. By pairing localized vascular injury with thrombin microinjection in the mesenteric circulation of mice, we have demonstrated that the fibrin network of thrombi progressively compacts over a 2-hour period. This was a genuine retraction process, as treating thrombi with blebbistatin to inhibit myosin IIa-mediated platelet contractility prevented shrinkage of the fibrin network. Real-time confocal analysis of fibrinolysis after recombinant tissue-type plasminogen activator (tPA) administration revealed that incomplete proteolysis of fibrin polymers markedly facilitated clot retraction. Similarly, inhibiting endogenous fibrinolysis with tranexamic acid reduced retraction of fibrin polymers in vivo. In vitro clot retraction experiments indicated that subthreshold doses of tPA facilitated clot retraction through a plasmin-dependent mechanism. These effects correlated with changes in the elastic modulus of fibrin clots. These findings define the endogenous fibrinolytic system as an important regulator of clot retraction, and show that promoting clot retraction is a novel and complementary means by which fibrinolytic enzymes can reduce thrombus size.


Assuntos
Retração do Coágulo , Fibrinólise , Actomiosina/metabolismo , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Fibrina/metabolismo , Fibrinólise/efeitos dos fármacos , Humanos , Masculino , Camundongos , Miosina não Muscular Tipo IIA/metabolismo , Trombose/diagnóstico por imagem , Trombose/metabolismo , Trombose/patologia , Ativador de Plasminogênio Tecidual/metabolismo , Ativador de Plasminogênio Tecidual/farmacologia , Ácido Tranexâmico/farmacologia
3.
Macromol Rapid Commun ; 40(2): e1800402, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30199116

RESUMO

RAFT-mediated free-radical emulsion polymerization is successfully used to synthesize polystyrene nanofibers using triblock amphiphilic macro-RAFT copolymers as stabilizers. The polymerization is under RAFT control, producing various morphologies from spherical particles, nanofibers, nanoplatelets, and polymer vesicles. Optimum conditions are established for the synthesis of predominantly negatively charged polymer nanofibers. Superparamagnetic iron oxide nanoparticles (SPION)-decorated nanofibers are formed by simple mixing of the SPIONs with the fibers at an appropriate pH. The composite material has been found to be superparamagnetic and could be aligned under a magnetic field.


Assuntos
Emulsões/química , Compostos Férricos/química , Radicais Livres/química , Nanopartículas de Magnetita/química , Nanofibras/química , Polimerização , Acrilatos/química , Técnicas de Química Sintética/métodos , Concentração de Íons de Hidrogênio , Nanopartículas de Magnetita/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Modelos Químicos , Estrutura Molecular , Nanofibras/ultraestrutura , Poliestirenos/síntese química , Poliestirenos/química , Estireno/química
4.
Langmuir ; 34(9): 3068-3075, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29420049

RESUMO

Hydrophobic ionic liquid ferrofluids (ILFFs) are studied for use in electrospray thrusters for microsatellite propulsion under nonatmospheric and in high-temperature environments. We synthesized a hydrophobic ILFF by dispersing sterically stabilized γ-Fe2O3 nanoparticles (NPs) in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. A diblock copolymer, C4-RAFT-AA10-DEAm60, was synthesized to facilitate multipoint bidentate anchoring to the NP through the acrylic acid block. The DEAm60 layer was incorporated to generate steric repulsion between particles to protect against the aggregation of magnetized particles arising from dipole-dipole attraction. The effect of shearing and variation in the magnetic field strength on the steric repulsion was examined using the DLVO theory. The effect of varying the magnetic field strength and particle concentration on the viscoelastic properties of the ferrofluid was evaluated using rheometry. The viscosity of the ferrofluid increased with the magnetic field strength, indicating that the magnetized particles assembled into a structure. The level of straining required to break down the structure formed by the magnetized particles increased with the magnetic field strength and particle concentration. The absence of particle interlocking during shearing was indicated by the smooth viscosity versus shear rate traces. The DLVO analysis showed that increasing the magnetic attraction between the particles causes the DEAm60 brush layers on the particles to overlap more, resulting in an increase in the steric repulsion. As overlapping increases, osmotic repulsion is caused before progressing to a strong elastic repulsion. The effect of the polymer solubility and particle interaction due to hydrodynamic forces on the steric repulsion was also analyzed.

5.
Langmuir ; 34(14): 4255-4263, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29517236

RESUMO

A robust polymerization technique that enables the surfactant-free aqueous synthesis of a high solid content latex containing polymeric hollow particles is presented. Uniquely designed amphiphilic macro-reversible addition fragmentation chain transfer (RAFT) copolymers were used as sole stabilizers for monomer emulsification as well as for free-radical emulsion polymerization. The polymerization was found to be under RAFT control, generating various morphologies from spherical particles, wormlike structures to polymer vesicles. The final particles were dominantly polymeric vesicles which had a substantially uniform and continuous polymer layer around a single aqueous filled void. They produced hollow particles once dried and were successfully used as opacifiers to impart opacity into polymer paint films. This method is simple, can be performed in a controllable and reproducible manner, and may be performed using diverse procedures.

6.
Int J Mol Sci ; 19(1)2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29320407

RESUMO

Nanomedicine is an emerging field with great potential in disease theranostics. We generated sterically stabilized superparamagnetic iron oxide nanoparticles (s-SPIONs) with average core diameters of 10 and 25 nm and determined the in vivo biodistribution and clearance profiles. Healthy nude mice underwent an intraperitoneal injection of these s-SPIONs at a dose of 90 mg Fe/kg body weight. Tissue iron biodistribution was monitored by atomic absorption spectroscopy and Prussian blue staining. Histopathological examination was performed to assess tissue toxicity. The 10 nm s-SPIONs resulted in higher tissue-iron levels, whereas the 25 nm s-SPIONs peaked earlier and cleared faster. Increased iron levels were detected in all organs and body fluids tested except for the brain, with notable increases in the liver, spleen, and the omentum. The tissue-iron returned to control or near control levels within 7 days post-injection, except in the omentum, which had the largest and most variable accumulation of s-SPIONs. No obvious tissue changes were noted although an influx of macrophages was observed in several tissues suggesting their involvement in s-SPION sequestration and clearance. These results demonstrate that the s-SPIONs do not degrade or aggregate in vivo and intraperitoneal administration is well tolerated, with a broad and transient biodistribution. In an ovarian tumor model, s-SPIONs were shown to accumulate in the tumors, highlighting their potential use as a chemotherapy delivery agent.


Assuntos
Compostos Férricos/química , Nanopartículas de Magnetita/administração & dosagem , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Humanos , Injeções Intraperitoneais , Fígado/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , Omento/química , Omento/efeitos dos fármacos , Omento/metabolismo , Tamanho da Partícula , Células RAW 264.7 , Baço/química , Baço/efeitos dos fármacos , Baço/metabolismo , Distribuição Tecidual , Transplante Heterólogo
7.
Biomacromolecules ; 17(3): 965-73, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26807678

RESUMO

We present the preparation of 11 nm polyacrylamide-stabilized polystyrene latex particles for conjugation to a microRNA model by surfactant-free RAFT emulsion polymerization. Our synthetic strategy involved the preparation of amphiphilic polyacrylamide-block-polystyrene copolymers, which were able to self-assemble into polymeric micelles and "grow" into polystyrene latex particles. The surface of these sterically stabilized particles was postmodified with a disulfide-bearing linker for the attachment of the microRNA model, which can be released from the latex particles under reducing conditions. These nanoparticles offer the advantage of ease of preparation via a scaleable process, and the versatility of their synthesis makes them adaptable to a range of applications.


Assuntos
Portadores de Fármacos/síntese química , Látex/química , MicroRNAs/administração & dosagem , Nanopartículas/química , Poliestirenos/química , Resinas Acrílicas/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Emulsões/química , Oxirredução , Polimerização , Tensoativos/química
8.
Langmuir ; 30(47): 14143-50, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25372842

RESUMO

Electrospray is a versatile technology used, for example, to ionize biomolecules for mass spectrometry, create nanofibers and nanowires, and propel spacecraft in orbit. Traditionally, electrospray is achieved via microfabricated capillary needle electrodes that are used to create the fluid jets. Here we report on multiple parallel jetting instabilities realized through the application of simultaneous electric and magnetic fields to the surface of a superparamagnetic electrically conducting ionic liquid with no needle electrodes. The ionic liquid ferrofluid is synthesized by suspending magnetic nanoparticles in a room-temperature molten salt carrier liquid. Two ILFFs are reported: one based on ethylammonium nitrate (EAN) and the other based on EMIM-NTf2. The ILFFs display an electrical conductivity of 0.63 S/m and a relative magnetic permeability as high as 10. When coincident electric and magnetic fields are applied to these liquids, the result is a self-assembling array of emitters that are composed entirely of the colloidal fluid. An analysis of the magnetic surface stress induced on the ILFF shows that the electric field required for transition to spray can be reduced by as much as 4.5 × 10(7) V/m compared to purely electrostatic spray. Ferrofluid mode studies in nonuniform magnetic fields show that it is feasible to realize arrays with up to 16 emitters/mm(2).

9.
Acta Biomater ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871204

RESUMO

Wound healing is facilitated by biomaterials-based grafts and substantially impacted by orchestrated inflammatory responses that are essential to the normal repair process. Tropoelastin (TE) based materials are known to shorten the period for wound repair but the mechanism of anti-inflammatory performance is not known. To explore this, we compared the performance of the gold standard Integra Dermal Regeneration Template (Integra), polyglycerol sebacate (PGS), and TE blended with PGS, in a murine full-thickness cutaneous wound healing study. Systemically, blending with TE favorably increased the F4/80+ macrophage population by day 7 in the spleen and contemporaneously induced elevated plasma levels of anti-inflammatory IL-10. In contrast, the PGS graft without TE prompted prolonged inflammation, as evidenced by splenomegaly and greater splenic granulocyte and monocyte fractions at day 14. Locally, the inclusion of TE in the graft led to increased anti-inflammatory M2 macrophages and CD4+T cells at the wound site, and a rise in Foxp3+ regulatory T cells in the wound bed by day 7. We conclude that the TE-incorporated skin graft delivers a pro-healing environment by modulating systemic and local tissue responses. STATEMENT OF SIGNIFICANCE: Tropoelastin (TE) has shown significant benefits in promoting the repair and regeneration of damaged human tissues. In this study, we show that TE promotes an anti-inflammatory environment that facilitates cutaneous wound healing. In a mouse model, we find that inserting a TE-containing material into a full-thickness wound results in defined, pro-healing local and systemic tissue responses. These findings advance our understanding of TE's restorative value in tissue engineering and regenerative medicine, and pave the way for clinical applications.

10.
Waste Manag ; 171: 393-400, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37776810

RESUMO

High-density polythene (HDPE) is difficult to separate from food packaging waste for recycling because the packaging occasionally has multilayer plastic labels attached. Solvents are employed in the current separation techniques to remove undesirable layers from HDPE substrates. The possibility of separating HDPE via the impact-delamination phenomenon was explored both theoretically and experimentally. Using the cohesive zone model (CZM), the decohesion of layers in a model two-layer laminate made of HDPE and LDPE layers was studied theoretically. According to this study, stress waves emerge and severely damage the adhesion between the layers as a cutting blade strikes the laminate at speeds greater than 40 m/s. The damage can be enhanced by increasing the strike velocity and the apex radius of the blade. These findings show that a novel plastic delaminator that can cut and delaminate the laminates simultaneously can be designed. The proposed machine will feature two sets of blades with varying edge apex radii. One set of blades can be designed to cause the most adhesion damage while the other blades cut the laminate. This unique combination of cutting and delamination operations has several benefits, including less solvent waste and downstream processes, greater environmental friendliness, and faster HDPE separation. Laminates from HDPE milk bottles were cut using a high-speed cutter-blender with six blades to test the predicted results. The cut HDPE flakes were separated pneumatically. According to FTIR analysis and SEM, only a trace of adhesive was present on the cut and separated HDPE flakes.

11.
Adv Mater ; 34(47): e2205614, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36120809

RESUMO

Native arteries contain a distinctive intima-media composed of organized elastin and an adventitia containing mature collagen fibrils. In contrast, implanted biodegradable small-diameter vascular grafts do not present spatially regenerated, organized elastin. The elastin-containing structures within the intima-media region encompass the elastic lamellae (EL) and internal elastic lamina (IEL) and are crucial for normal arterial function. Here, the development of a novel electrospun small-diameter vascular graft that facilitates de novo formation of a structurally appropriate elastin-containing intima-media region following implantation is described. The graft comprises a non-porous microstructure characterized by tropoelastin fibers that are embedded in a PGS matrix. After implantation in mouse abdominal aorta, the graft develops distinct cell and extracellular matrix profiles that approximate the native adventitia and intima-media by 8 weeks. Within the newly formed intima-media region there are circumferentially aligned smooth muscle cell layers that alternate with multiple EL similar to that found in the arterial wall. By 8 months, the developed adventitia region contains mature collagen fibrils and the neoartery presents a distinct IEL with thickness comparable to that in mouse abdominal aorta. It is proposed that this new class of material can generate the critically required, organized elastin needed for arterial regeneration.


Assuntos
Prótese Vascular , Elastina , Camundongos , Animais , Miócitos de Músculo Liso , Artérias , Colágeno
12.
Small Methods ; 5(2): e2000692, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-34927889

RESUMO

Hydroxyapatite nanoparticles (HAP NPs) are important for medicine, bioengineering, catalysis, and water treatment. However, current understanding of the nanoscale phenomena that confer HAP NPs their many useful properties is limited by a lack of information about the distribution of the atoms within the particles. Atom probe tomography (APT) has the spatial resolution and chemical sensitivity for HAP NP characterization, but difficulties in preparing the required needle-shaped samples make the design of these experiments challenging. Herein, two techniques are developed to encapsulate HAP NPs and prepare them into APT tips. By sputter-coating gold or the atomic layer deposition of alumina for encapsulation, partially fluoridated HAP NPs are successfully characterized by voltage- or laser-pulsing APT, respectively. Analyses reveal that significant tradeoffs exist between encapsulant methods/materials for HAP characterization and that selection of a more robust approach will require additional technique development. This work serves as an essential starting point for advancing knowledge about the nanoscale spatiochemistry of HAP NPs.


Assuntos
Composição de Medicamentos/instrumentação , Hidroxiapatitas/química , Tomografia/métodos , Óxido de Alumínio/química , Ouro/química , Nanopartículas , Tamanho da Partícula
13.
Langmuir ; 26(2): 684-91, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-19754069

RESUMO

We have examined the nucleation of chemically generated nitrogen gas bubbles in microheterogeneous systems, using optical microscopy on a model system consisting of a single liquid-liquid interface. Results clearly show that bubble nucleation occurs in both the aqueous and oil phases, despite the nitrogen production reaction being a purely aqueous phase process. A theoretical model is developed which describes the time evolution of the nitrogen concentration profile, and this reveals that bubbles in the oil are a result of homogeneous nucleation of dissolved N(2) transported across the interface into a (supersaturated) diffusion layer. We further show that bubble nucleation in the oil can be inhibited or eliminated by adding water-soluble surfactants, which facilitates aqueous phase bubble nucleation and then acts as highly effective nitrogen sinks, severely reducing the flux of dissolved gas across the water-oil interface.


Assuntos
Gases/química , Modelos Teóricos , Nitrogênio/química , Água/química , Difusão , Microscopia , Óleos/química , Tensoativos/química
14.
Langmuir ; 26(6): 4465-72, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-19950943

RESUMO

The preparation and properties of an aqueous ferrofluid consisting of a concentrated (>65 wt %) dispersion of sterically stabilized superparamagnetic, iron oxide (maghemite) nanoparticles stable for several months at high ionic strength and over a broad pH range is described. The 6-8 nm diameter nanoparticles are individually coated with a short poly(acrylic acid)-b-poly(acrylamide) copolymer, designed to form the thinnest possible steric stabilizing layer while remaining strongly attached to the iron oxide surface over a wide range of nanoparticle concentrations. Thermogravimetric analysis yields an iron oxide content of 76 wt % in the dried particles, consistent with a dry polymer coating of approximately 1 nm in thickness, while the poly(acrylamide) chain length indicated by electrospray mass spectrometry is consistent with the 4-5 nm increase in the hydrodynamic radius observed by light scattering when the poly(acrylamide) stabilizing chains are solvated. Saturation magnetization experiments indicate nonmagnetic surface layers resulting from the strong chemical attachment of the poly(acrylic acid) block to the particle surface, also observed by Fourier transform infrared spectroscopy.


Assuntos
Acrilamidas/química , Compostos Férricos/química , Magnetismo , Nanopartículas , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Difração de Raios X
15.
J Phys Chem B ; 113(20): 7086-94, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19402692

RESUMO

We describe a simple model for the kinetics and chain-length distribution of polymers made by living radical techniques. Living radical methods give good control over the molecular weight of a linear polymer by capping the growing end and forming a dormant chain. The polymer is predominantly capped, and occasionally decaps to form a radical that propagates for a short period before recapping. Our model uses this mechanism to describe the chain-length distribution of polymers made by living radical methods. We focus on oligomers made by reversible addition-fragmentation chain transfer (RAFT) polymerization as model systems. Our model can determine optimal reaction conditions for desired polymer properties and test hypotheses about reaction schemes by using only two parameters, with each parameter related to the kinetics. The first parameter is the mean number of monomers added when a chain decaps. A broad distribution results if many monomers are added upon decapping. The second parameter is the mean number of times a polymer decaps. Many decapping events indicate high monomer conversion. Our model gives kinetic information by directly fitting to an experimental chain-length distribution, which is the reverse of other kinetic models that generate the distribution from rate coefficients. Our approach has also the advantage of being simpler than previously published kinetic schemes, which use many rate coefficients as inputs. Our model was tested against three monomers (acrylic acid, butyl acrylate, and styrene) and two RAFT agents. In each case, we successfully describe the chain-length distribution, and give information about the kinetics, especially the probability of propagation versus deactivation by the RAFT mechanism. This excellent agreement with a priori expectations and quantum calculations makes our model a powerful tool for predicting the structure of polymers obtained by living radical polymerization.

16.
Macromol Rapid Commun ; 30(23): 2002-21, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21638489

RESUMO

Chain transfer to polymer (CTP) in conventional free-radical polymerizations (FRPs) and controlled radical polymerizations (ATRP, RAFT and NMP) of n-butyl acrylate (BA) has been investigated using (13) C NMR measurements of branching in the poly(n-butyl acrylate) produced. The mol-% branches are reduced significantly in the controlled radical polymerizations as compared to conventional FRPs. Several possible explanations for this observation are discussed critically and all except one refuted. The observations are explained in terms of differences in the concentration of highly reactive short-chain radicals which can be expected to undergo both intra- and inter-molecular CTP at much higher rates than long-chain radicals. In conventional FRP, the distribution of radical concentrations is broad and there always is present a significant proportion of short-chain radicals, whereas in controlled radical polymerizations, the distribution is narrow with only a small proportion of short-chain radicals which diminishes as the living chains grow. Hence, irrespective of the type of control, controlled radical polymerizations give rise to lower levels of branching, when performed under otherwise similar conditions to conventional FRP. Similar observations are expected for other acrylates and monomers that undergo chain transfer to polymer during radical polymerization.

18.
Macromol Biosci ; 17(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27973756

RESUMO

The authors report the preparation of a novel range of functional polyacrylamide stabilized polystyrene nanoparticles, obtained by surfactant-free reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization, their fluorescent tagging, cellular uptake, and biodistribution. The authors show the versatility of the RAFT emulsion process for the design of functional nanoparticles of well-defined size that can be used as drug delivery vectors. Functionalization with a fluorescent tag offers a useful visualization tool for tracing, localization, and clearance studies of these carriers in biological models. The studies are carried out by labeling the sterically stabilized latex particles chemically with rhodamine B. The fluorescent particles are incubated in a healthy human renal proximal tubular cell line model, and intravenously injected into a mouse model. Cellular localization and biodistribution of these particles on the biological models are explored.


Assuntos
Portadores de Fármacos , Corantes Fluorescentes/química , Nanopartículas/química , Imagem Óptica/métodos , Rodaminas/química , Coloração e Rotulagem/métodos , Resinas Acrílicas/química , Animais , Transporte Biológico , Linhagem Celular , Emulsões , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Injeções Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microesferas , Nanopartículas/administração & dosagem , Tamanho da Partícula , Polimerização , Poliestirenos/química , Distribuição Tecidual
19.
Int J Nanomedicine ; 12: 899-909, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28184160

RESUMO

Physiologically stable multimodality imaging probes for positron emission tomography/single-photon emission computed tomography (PET/SPECT)-magnetic resonance imaging (MRI) were synthesized using the superparamagnetic maghemite iron oxide (γ-Fe2O3) nanoparticles (SPIONs). The SPIONs were sterically stabilized with a finely tuned mixture of diblock copolymers with either methoxypolyethylene glycol (MPEG) or primary amine NH2 end groups. The radioisotope for PET or SPECT imaging was incorporated with the SPIONs at high temperature. 57Co2+ ions with a long half-life of 270.9 days were used as a model for the radiotracer to study the kinetics of radiolabeling, characterization, and the stability of the radiolabeled SPIONs. Radioactive 67Ga3+ and Cu2+-labeled SPIONs were also produced successfully using the optimized conditions from the 57Co2+-labeling process. No free radioisotopes were detected in the aqueous phase for the radiolabeled SPIONs 1 week after dispersion in phosphate-buffered saline (PBS). All labeled SPIONs were not only well dispersed and stable under physiological conditions but also noncytotoxic in vitro. The ability to design and produce physiologically stable radiolabeled magnetic nanoparticles with a finely controlled number of functionalizable end groups on the SPIONs enables the generation of a desirable and biologically compatible multimodality PET/SPECT-MRI agent on a single T2 contrast MRI probe.


Assuntos
Coloides/química , Compostos Férricos/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/administração & dosagem , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Células 3T3-L1 , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dextranos/química , Ligantes , Nanopartículas de Magnetita/química , Camundongos , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Polietilenoglicóis , Ratos
20.
ACS Appl Mater Interfaces ; 8(10): 6743-50, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26910574

RESUMO

We report the fabrication of both single-scale and hierarchical superhydrophobic surfaces, created by exploiting the spontaneous wrinkling of a rigid Teflon AF film on two types of shrinkable plastic substrates. Sub-100 nm to micrometric wrinkles were reproducibly generated by this simple process, with remarkable control over the size and hierarchy. Hierarchical Teflon AF wrinkled surfaces showed extremely high water repellence (contact angle 172°) and very low contact angle hysteresis (2°), resulting in droplets rolling off the surface at tilt angles lower than 5°. The wrinkling process intimately binds the Teflon AF layer with its substrate, making these surfaces mechanically robust, as revealed by macroscale and nanoscale wear tests: hardness values were close to that of commercial optical lenses and aluminum films, resistance to scratch was comparable to commercial hydrophobic coatings, and damage by extensive sonication did not significantly affect water repellence. By this fabrication method the size of the wrinkles can be reproducibly tuned from the nanoscale to the microscale, across the whole surface in one step; the fabrication procedure is extremely rapid, requiring only 2 min of thermal annealing to produce the desired topography, and uses inexpensive materials. The very low roll-off angles achieved in the hierarchical surfaces offer a potentially up-scalable alternative as self-cleaning and drag-reducing coatings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA