Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Pharmacol Exp Ther ; 388(2): 325-332, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37643794

RESUMO

Organophosphate (OP) compounds are highly toxic and include pesticides and chemical warfare nerve agents. OP exposure inhibits the acetylcholinesterase enzyme, causing cholinergic overstimulation that can evolve into status epilepticus (SE) and produce lethality. Furthermore, OP-induced SE survival is associated with mood and memory dysfunction and spontaneous recurrent seizures (SRS). In male Sprague-Dawley rats, we assessed hippocampal pathology and chronic SRS following SE induced by administration of OP agents paraoxon (2 mg/kg, s.c.), diisopropyl fluorophosphate (4 mg/kg, s.c.), or O-isopropyl methylphosphonofluoridate (GB; sarin) (2 mg/kg, s.c.), immediately followed by atropine and 2-PAM. At 1-hour post-OP-induced SE onset, midazolam was administered to control SE. Approximately 6 months after OP-induced SE, SRS were evaluated using video and electroencephalography monitoring. Histopathology was conducted using hematoxylin and eosin (H&E), while silver sulfide (Timm) staining was used to assess mossy fiber sprouting (MFS). Across all the OP agents, over 60% of rats that survived OP-induced SE developed chronic SRS. H&E staining revealed a significant hippocampal neuronal loss, while Timm staining revealed extensive MFS within the inner molecular region of the dentate gyrus. This study demonstrates that OP-induced SE is associated with hippocampal neuronal loss, extensive MFS, and the development of SRS, all hallmarks of chronic epilepsy. SIGNIFICANCE STATEMENT: Models of organophosphate (OP)-induced SE offer a unique resource to identify molecular mechanisms contributing to neuropathology and the development of chronic OP morbidities. These models could allow the screening of targeted therapeutics for efficacious treatment strategies for OP toxicities.


Assuntos
Epilepsia , Estado Epiléptico , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Fibras Musgosas Hipocampais/fisiologia , Organofosfatos/efeitos adversos , Acetilcolinesterase , Estado Epiléptico/induzido quimicamente , Convulsões/induzido quimicamente , Modelos Animais de Doenças
2.
J Pharmacol Exp Ther ; 388(2): 647-654, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37863487

RESUMO

Approximately one-third of Gulf War veterans suffer from Gulf War Illness (GWI), which encompasses mood disorders and depressive symptoms. Deployment-related exposure to organophosphate compounds has been associated with GWI development. Epigenetic modifications have been reported in GWI veterans. We previously showed that epigenetic histone dysregulations were associated with decreased brain-derived neurotrophic factor (BDNF) expression in a GWI rat model. GWI has no effective therapies. Ketamine (KET) has recently been approved by the Food and Drug Administration for therapy-resistant depression. Interestingly, BDNF upregulation underlies KET's antidepressant effect in GWI-related depression. Here, we investigated whether KET's effect on histone mechanisms signals BDNF upregulations in GWI. Male Sprague-Dawley rats were injected once daily with diisopropyl fluorophosphate (DFP; 0.5 mg/kg, s.c., 5 days). At 6 months following DFP exposure, KET (10 mg/kg, i.p.) was injected, and brains were dissected 24 hours later. Western blotting was used for protein expression, and epigenetic studies used chromatin immunoprecipitation methods. Dil staining was conducted for assessing dendritic spines. Our results indicated that an antidepressant dose of KET inhibited the upregulation of histone deacetylase (HDAC) enzymes in DFP rats. Furthermore, KET restored acetylated histone occupancy at the Bdnf promoter IV and induced BDNF protein expression in DFP rats. Finally, KET treatment also increased the spine density and altered the spine diversity with increased T-type and decreased S-type spines in DFP rats. Given these findings, we propose that KET's actions involve the inhibition of HDAC expression, upregulation of BDNF, and dendritic modifications that together ameliorates the pathologic synaptic plasticity and exerts an antidepressant effect in DFP rats. SIGNIFICANCE STATEMENT: This study offers evidence supporting the involvement of epigenetic histone pathways in the antidepressant effects of ketamine (KET) in a rat model of Gulf War Illness (GWI)-like depression. This effect is achieved through the modulation of histone acetylation at the Bdnf promoter, resulting in elevated brain-derived neurotrophic factor expression and subsequent dendritic remodeling in the hippocampus. These findings underscore the rationale for considering KET as a potential candidate for clinical trials aimed at managing GWI-related depression.


Assuntos
Fluoretos , Ketamina , Síndrome do Golfo Pérsico , Fosfatos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Ketamina/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Guerra do Golfo , Síndrome do Golfo Pérsico/induzido quimicamente , Síndrome do Golfo Pérsico/metabolismo , Síndrome do Golfo Pérsico/patologia , Histonas , Hipocampo , Antidepressivos/efeitos adversos
3.
BMC Cancer ; 18(1): 1129, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30445933

RESUMO

BACKGROUND: Interactions between the protein synthesis inhibitor homoharringtonine (HHT) and the proteasome inhibitor bortezomib were investigated in DLBCL and mantle cell lymphoma cells (MCL). METHODS: Various DLBCL and MCL cells were exposed to HHT and bortezomib alone or together after which apoptosis and signaling pathway perturbations were monitored by flow cytometry and Western blot analysis. Xenograft mouse models were used to assess tumor growth and animal survival. RESULTS: HHT and bortezomib co-administration synergistically induced apoptosis in GC-, ABC- and double-hit DLBCL cells. Similar interactions were observed in MCL cells and in primary lymphoma cells. HHT/bortezomib co-administration diminished binding of MCL-1 to both BAK and NOXA. Knock-down of NOXA significantly diminished lethality whereas MCL-1 knock-down or ectopic NOXA expression increased cell death. Notably, HHT/bortezomib lethality was dramatically reduced in BAK knockout or knockdown cells. Finally, HHT/bortezomib co-administration significantly improved survival compared to single agents in GC- and ABC- xenograft models while exhibiting little toxicity. CONCLUSIONS: These findings indicate that HHT and bortezomib cooperate to kill DLBCL and MCL cells through a process involving MCL-1 down-regulation, NOXA up-regulation, and BAK activation. They also suggest that a strategy combining HHT with bortezomib warrants attention in DLBCL and MCL.


Assuntos
Bortezomib/farmacologia , Mepesuccinato de Omacetaxina/farmacologia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma de Célula do Manto/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma de Célula do Manto/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Inibidores de Proteassoma/farmacologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Blood ; 126(12): 1462-72, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26265695

RESUMO

Chromodomain helicase DNA-binding protein 4 (CHD4) is an ATPase that alters the phasing of nucleosomes on DNA and has recently been implicated in DNA double-stranded break (DSB) repair. Here, we show that depletion of CHD4 in acute myeloid leukemia (AML) blasts induces a global relaxation of chromatin that renders cells more susceptible to DSB formation, while concurrently impeding their repair. Furthermore, CHD4 depletion renders AML blasts more sensitive both in vitro and in vivo to genotoxic agents used in clinical therapy: daunorubicin (DNR) and cytarabine (ara-C). Sensitization to DNR and ara-C is mediated in part by activation of the ataxia-telangiectasia mutated pathway, which is preliminarily activated by a Tip60-dependent mechanism in response to chromatin relaxation and further activated by genotoxic agent-induced DSBs. This sensitization preferentially affects AML cells, as CHD4 depletion in normal CD34(+) hematopoietic progenitors does not increase their susceptibility to DNR or ara-C. Unexpectedly, we found that CHD4 is necessary for maintaining the tumor-forming behavior of AML cells, as CHD4 depletion severely restricted the ability of AML cells to form xenografts in mice and colonies in soft agar. Taken together, these results provide evidence for CHD4 as a novel therapeutic target whose inhibition has the potential to enhance the effectiveness of genotoxic agents used in AML therapy.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Antimetabólitos Antineoplásicos/uso terapêutico , Autoantígenos/genética , Citarabina/uso terapêutico , Daunorrubicina/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Animais , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Feminino , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Interferência de RNA , Células Tumorais Cultivadas
5.
Haematologica ; 100(12): 1553-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26452980

RESUMO

Effects of concurrent inhibition of mTORC1/2 and Bcl-2/Bcl-xL in human acute myeloid leukemia cells were examined. Tetracycline-inducible Bcl-2/Bcl-xL dual knockdown markedly sensitized acute myeloid leukemia cells to the dual TORC1/2 inhibitor INK128 in vitro as well as in vivo. Moreover, INK128 co-administered with the Bcl-2/xL antagonist ABT-737 sharply induced cell death in multiple acute myeloid leukemia cell lines, including TKI-resistant FLT3-ITD mutants and primary acute myeloid leukemia blasts carrying various genetic aberrations e.g., FLT3, IDH2, NPM1, and Kras, while exerting minimal toxicity toward normal hematopoietic CD34(+) cells. Combined treatment was particularly active against CD34(+)/CD38(-)/CD123(+) primitive leukemic progenitor cells. The INK128/ABT-737 regimen was also effective in the presence of a protective stromal microenvironment. Notably, INK128 was more potent than the TORC1 inhibitor rapamycin in down-regulating Mcl-1, diminishing AKT and 4EBP1 phosphorylation, and potentiating ABT-737 activity. Mcl-1 ectopic expression dramatically attenuated INK128/ABT-737 lethality, indicating an important functional role for Mcl-1 down-regulation in INK128/ABT-737 actions. Immunoprecipitation analysis revealed that combined treatment markedly diminished Bax, Bak, and Bim binding to all major anti-apoptotic Bcl-2 members (Bcl-2/Bcl-xL/Mcl-1), while Bax/Bak knockdown reduced cell death. Finally, INK128/ABT-737 co-administration sharply attenuated leukemia growth and significantly prolonged survival in a systemic acute myeloid leukemia xenograft model. Analysis of subcutaneous acute myeloid leukemia-derived tumors revealed significant decrease in 4EBP1 phosphorylation and Mcl-1 protein level, consistent with results obtained in vitro. These findings demonstrate that co-administration of dual mTORC1/mTORC2 inhibitors and BH3-mimetics exhibits potent anti-leukemic activity in vitro and in vivo, arguing that this strategy warrants attention in acute myeloid leukemia.


Assuntos
Benzoxazóis/farmacologia , Compostos de Bifenilo/farmacologia , Regulação para Baixo/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Complexos Multiproteicos/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Nitrofenóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteína bcl-X/antagonistas & inibidores , Animais , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Complexos Multiproteicos/metabolismo , Nucleofosmina , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Células U937 , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X/metabolismo
6.
Neurotoxicology ; 90: 172-183, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35358535

RESUMO

Organophosphate (OP) chemicals include commonly used pesticides and chemical warfare agents, and mechanistically they are potent inhibitors of the cholinesterase (ChE) enzyme. Epidemiological studies report long-term neuropsychiatric issues, including depression and cognitive impairments in OP-exposed individuals. Chlorpyrifos (CPF) is one of the most widely used pesticides worldwide. Multiple laboratory studies have reported on either the long-term behavioral effect of an acute high-dose CPF (30-250 mg/kg) or studied sub-chronic behavioral effects, particularly the motor and cognitive effects of repeated low-dose CPF. However, studies are lacking on chronic mood and depression-related morbidities following repeated CPF doses that would mimic occupationally relevant OP exposures during adulthood. In this study, adult male rats were injected with CPF (1, 3, 5, or 10 mg/kg/d, s.c.) for 21 consecutive days. Dependent on the CPF dose, ChE activity was inhibited approximately 60-80% in the blood and about 20-50% in the hippocampus at 2-days after the end of CPF exposures. Following a 12-week washout period, a complete recovery of ChE activity was noted. However, CPF-treated rats exhibited a dose-dependent increase in signs related to anhedonia (sucrose preference test), anxiety (open-field and elevated plus-maze), and despair (forced swim test) at this stage. To the best of our knowledge, this could be the first laboratory study that demonstrates a cause-effect relationship between occupational-like CPF exposures in adult rats and the development of long-term depression-related outcomes and could provide an experimental system to study molecular mechanisms underlying environmental OP exposures and the elevated risk for chronic behavioral deficits.


Assuntos
Clorpirifos , Inseticidas , Praguicidas , Animais , Ansiedade/induzido quimicamente , Clorpirifos/toxicidade , Inibidores da Colinesterase/farmacologia , Colinesterases , Inseticidas/toxicidade , Masculino , Ratos
7.
Life Sci ; 281: 119765, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34186043

RESUMO

AIMS: Deployment-related exposures to organophosphate (OP) compounds are implicated for Gulf War Illness (GWI) development in First GW veterans. However, reasons for the persistence of GWI are not fully understood. Epigenetic modifications to chromatin are regulatory mechanisms that can adaptively or maladaptively respond to external stimuli. These include DNA methylation and histone acetylation. DNA methylation changes have been reported in GWI but the role of histone acetylation in GWI has been less explored, despite its importance as an epigenetic mechanism for neurological disorders. MAIN METHODS: Male Sprague-Dawley rats were exposed to OP diisopropyl fluorophosphate (DFP, 0.5 mg/kg s.c., 5-d) and 6-m later brains were dissected for hippocampus. Western blotting, activity assays and chromatin immunoprecipitation (ChIP) were utilized for epigenetic analyses. Behavior was assessed using the Forced Swim Test (FST) and the Elevated Plus Maze (EPM). KEY FINDINGS: We observed a significant upregulation in HDAC1 protein along with a significant increase in HDAC enzyme activity in the hippocampus of DFP rats. A locus-specific ChIP study revealed decreases in H3K9ac at the brain derived neurotrophic factor (Bdnf) promoter IV coupled with a significant decrease in BDNF protein in DFP rat hippocampus. Treatment with HDAC inhibitor valproic acid reduced HDAC activity and decreased the FST immobility time in DFP rats. SIGNIFICANCE: Our research suggests that epigenetic alterations to histone acetylation pathways and decreased BDNF expression could represent novel mechanisms for GWI symptomatology and may provide new targets for developing effective drugs for GWI treatment.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Epigênese Genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Histonas/metabolismo , Isoflurofato/administração & dosagem , Acetilação , Animais , Relação Dose-Resposta a Droga , Hipocampo/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Masculino , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Ácido Valproico/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-32629972

RESUMO

Approximately 33% of U.S. soldiers from the first Gulf War suffer from a multi-system disorder known as the Gulf War Illness (GWI). GW veterans suffer from a cluster of symptoms that prominently include fatigue and can include mood-related symptoms. Compared to traditional antidepressants, ketamine (KET) produces a fast-onset and long-lasting antidepressant response, but assessments of KET for GWI-related depression are lacking. The etiology of GWI is multi-factorial and exposure to organophosphates (OP) during deployment is one of the factors underlying GWI development. Here, male Sprague-Dawley rats were repeatedly exposed to an OP DFP and three months later these rats, when assessed on a battery of rodent behavioral assays, displayed signs consistent with aspects of GWI characteristics. When treated with a sub-anesthetic dose of KET (3, 5, or 10 mg/kg, i.p.), DFP-treated rats exhibited a significant improvement in immobility time, open-arm exploration, and sucrose consumption as early as 1 h and much of these effects persisted at 24-h post-KET injection. KET's stereoisomers, R-KET and S-KET, also exhibited such effects in DFP rats, with R-KET being the more potent isomer. Our studies provide a starting point for further assessment of KET for GWI depression.


Assuntos
Ketamina , Organofosfatos , Síndrome do Golfo Pérsico , Animais , Modelos Animais de Doenças , Ketamina/toxicidade , Masculino , Organofosfatos/toxicidade , Síndrome do Golfo Pérsico/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Estereoisomerismo
9.
Neurotoxicology ; 80: 52-59, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32592718

RESUMO

Exposure to organophosphates (OP) during the First Gulf War is among one of the factors for Gulf War Illness (GWI) development in veterans and it has been challenging to treat GWI symptoms with existing therapies. Ketamine produces a rapid-onset and sustained antidepressant response, but there is no evidence whether ketamine treatment is effective for GWI depression. Repeated, low-dose exposure to diisopropyl fluorophosphate (DFP) mimic Gulf War related OP exposures and produces a chronic depressive state in rats. In this study, DFP-exposed rats treated with ketamine (10 mg/kg, i.p.) exhibited antidepressant-like effect on the Forced Swim Test at 1-h. This effect persisted at 24-h post ketamine, a time-point by which it is eliminated from the brain suggesting involvement of mechanisms that affect long-term synaptic plasticity. Western blot analysis showed significantly lower Brain-Derived Neurotrophic Factor (BDNF) levels in DFP rat brains. Ketamine produced a nonsignificant increase in BDNF expression at 1-h but produced a larger, significant (2.2-fold) increase at 24-h in DFP rats. We previously reported chronic hippocampal calcium elevations ([Ca2+]i) in DFP rats. Ketamine-treated DFP rats exhibited significantly lower [Ca2+]i at 1-h but not at 24-h. Interestingly, treatment with ANA-12, a TrkB-BDNF receptor antagonist, in DFP rats blunted ketamine's antidepressant-like effect at 24-h but not at 1-h. These experiments suggest that in a rat model of DFP-induced depression, inhibition of the NMDAR-Ca2+ contributes to the rapid-onset antidepressant effects of ketamine while the antidepressant actions that persisted at 24-h post ketamine administration involve upregulation of BDNF signaling.


Assuntos
Antidepressivos , Comportamento Animal , Encéfalo , Depressão , Antagonistas de Aminoácidos Excitatórios , Ketamina , Síndrome do Golfo Pérsico , Animais , Masculino , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/metabolismo , Depressão/psicologia , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Locomoção/efeitos dos fármacos , Síndrome do Golfo Pérsico/induzido quimicamente , Síndrome do Golfo Pérsico/tratamento farmacológico , Síndrome do Golfo Pérsico/metabolismo , Síndrome do Golfo Pérsico/psicologia , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores de Tempo
11.
Cancer Res ; 78(11): 3075-3086, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29559471

RESUMO

Inhibitors targeting BCL-2 apoptotic proteins have significant potential for the treatment of acute myeloid leukemia (AML); however, complete responses are observed in only 20% of patients, suggesting that targeting BCL-2 alone is insufficient to yield durable responses. Here, we assessed the efficacy of coadministration of the PI3K/mTOR inhibitor GDC-0980 or the p110ß-sparing PI3K inhibitor taselisib with the selective BCL-2 antagonist venetoclax in AML cells. Tetracycline-inducible downregulation of BCL-2 significantly sensitized MV4-11 and MOLM-13 AML cells to PI3K inhibition. Venetoclax/GDC-0980 coadministration induced rapid and pronounced BAX mitochondrial translocation, cytochrome c release, and apoptosis in various AML cell lines in association with AKT/mTOR inactivation and MCL-1 downregulation; ectopic expression of MCL-1 significantly protected cells from this regimen. Combined treatment was also effective against primary AML blasts from 17 patients, including those bearing various genetic abnormalities. Venetoclax/GDC-0980 markedly induced apoptosis in primitive CD34+/38-/123+ AML cell populations but not in normal hematopoietic progenitor CD34+ cells. The regimen was also active against AML cells displaying intrinsic or acquired venetoclax resistance or tumor microenvironment-associated resistance. Either combinatorial treatment markedly reduced AML growth and prolonged survival in a systemic AML xenograft mouse model and diminished AML growth in two patient-derived xenograft models. Venetoclax/GDC-0980 activity was partially diminished in BAK-/- cells and failed to induce apoptosis in BAX-/- and BAX-/-BAK-/- cells, whereas BIM-/- cells were fully sensitive. Similar results were observed with venetoclax alone in in vitro and in vivo systemic xenograft models. Collectively, these studies demonstrate that venetoclax/GDC-0980 exhibits potent anti-AML activity primarily through BAX and, to a lesser extent, BAK. These findings argue that dual BCL-2 and PI3K inhibition warrants further evaluation in AML.Significance: Combined treatment with clinically relevant PI3K and BCL-2 inhibitors may prove effective in the treatment of acute myeloid leukemia. Cancer Res; 78(11); 3075-86. ©2018 AACR.


Assuntos
Apoptose/fisiologia , Leucemia Mieloide Aguda/metabolismo , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Células U937
12.
Oncotarget ; 8(19): 31478-31493, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28416758

RESUMO

Interactions between the polo-like kinase 1 (PLK1) inhibitor volasertib and the histone deacetylase inhibitor (HDACI) belinostat were examined in diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) cells in vitro and in vivo. Exposure of DLBCL cells to very low concentrations of volasertib in combination with belinostat synergistically increased cell death (apoptosis). Similar interactions occurred in GC-, ABC-, double-hit DLBCL cells, MCL cells, bortezomib-resistant cells and primary lymphoma cells. Co-exposure to volasertib/belinostat induced a marked increase in M-phase arrest, phospho-histone H3, mitotic errors, cell death in M-phase, and DNA damage. Belinostat diminished c-Myc mRNA and protein expression, an effect significantly enhanced by volasertib co-exposure. c-Myc knock-down increased DNA damage and cell death in response to volasertib, arguing that c-Myc down-regulation plays a functional role in the lethality of this regimen. Notably, PLK1 knock-down in DLBCL cells significantly increased belinostat-induced M-phase accumulation, phospho-histone H3, γH2AX, and cell death. Co-administration of volasertib and belinostat dramatically reduced tumor growth in an ABC-DLBCL flank model (U2932) and a systemic double-hit lymphoma model (OCI-Ly18), accompanied by a pronounced increase in survival without significant weight loss or other toxicities. Together, these findings indicate that PLK1/HDAC inhibition warrants attention as a therapeutic strategy in NHL.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Animais , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Genes Letais , Genes myc , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Linfoma não Hodgkin/tratamento farmacológico , Linfoma não Hodgkin/metabolismo , Linfoma não Hodgkin/mortalidade , Linfoma não Hodgkin/patologia , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Pteridinas/farmacologia , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-Like
13.
Leuk Res ; 39(1): 65-71, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25465126

RESUMO

Interactions between the dual BCR/ABL and Src inhibitor bosutinib and the Chk1 inhibitor PF-00477736 were examined in BCR/ABL(+) leukemia cells, particularly imatinib-resistant cells, including those with the T315I mutation. Bosutinib blocked PF-00477736-induced ERK1/2 activation and sharply increased apoptosis in association with Mcl-1 inhibition, p34(cdc2) dephosphorylation, BimEL up-regulation, and DNA damage in imatinib-resistant CML or Ph(+) ALL cell lines. Inhibition of Src or MEK1 by shRNA significantly enhanced PF-0047736 lethality. Bosutinib/PF-00477736 co-treatment also potentiated cell death in CD34(+) CML patient samples, including dasatinib-resistant blast crisis cells exhibiting both T315I and E355G mutations, but was minimally toxic to normal CD34(+) cells. Finally, combined in vivo treatment significantly suppressed BaF3/T315I tumor growth and prolonged survival in an allogeneic mouse model. Together, these findings suggest that this targeted combination strategy warrants attention in IM-resistant CML or Ph(+) ALL.


Assuntos
Compostos de Anilina , Antineoplásicos/farmacologia , Benzamidas , Benzodiazepinonas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Nitrilas , Piperazinas , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases , Proteínas Quinases/metabolismo , Pirazóis , Pirimidinas , Quinolinas , Substituição de Aminoácidos , Compostos de Anilina/agonistas , Compostos de Anilina/farmacologia , Animais , Benzodiazepinonas/agonistas , Benzodiazepinonas/farmacologia , Quinase 1 do Ponto de Checagem , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/genética , Humanos , Mesilato de Imatinib , Células K562 , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação de Sentido Incorreto , Proteína de Sequência 1 de Leucemia de Células Mieloides , Nitrilas/agonistas , Nitrilas/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Pirazóis/agonistas , Pirazóis/farmacologia , Quinolinas/agonistas , Quinolinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA