Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Res ; 93(4): 797-800, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35817956

RESUMO

There is unmistakable evidence of increased NIH funding for pediatric and perinatal research, but there is much work to be done. To further promote NIH-funded pediatric and perinatal research, we advocate for a life-cycle approach in which the return on the investment continues over the lifespan. Although elected policymakers have short-time horizons, pediatric and perinatal researchers must provide novel evidence and theoretical arguments demonstrating the long-term health benefits for the adults of tomorrow by improving the health of our current pediatric populations. Child health researchers must communicate the role of early developmental events on childhood and adult disease, including those that are prenatal and gestational so that its importance is understood by the public and policymakers.


Assuntos
Pesquisa Biomédica , Gravidez , Feminino , Adulto , Humanos , Criança , Parto
2.
Pediatr Res ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631692

RESUMO

Despite the significant increase in pediatric funding, an important question is whether recent changes in the burden of disease and conditions (child and adolescent mortality and nonfatal health loss) are reflected in the National Institutes of Health's (NIH) allocation process. As it sets future priorities, NIH acknowledges "a need to scan the landscape for unmet needs and emerging challenges" so that supported "research translates into meaningful health benefits." Our focus is to scan the pediatric budgetary landscape, report research funding for childhood adversity and adverse childhood experiences, and to illuminate gun violence, suicide, and drug abuse/overdose as prime examples of pediatric unmet needs and emerging challenges. Our findings suggest that pediatric researchers must reconceptualize gun violence as a form of childhood adversity and adverse childhood experiences, as we also need to do for other leading causes of child and adolescent mortality such as suicide and drug abuse/overdose. As it relates to the leading cause of death for children and adolescents, pediatric-related gun violence research spending remains only 0.0017% of the NIH pediatric portfolio. IMPACT: New data on NIH spending on ACEs and childhood adversity. New data to assess the relationship of spending to pediatric burden of disease. New data on pediatrics-related gun violence, suicide and drug abuse/overdose spending.

3.
Pediatr Res ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694026

RESUMO

IMPACT: This is an introduction to an article series devoted to the current state and future of pediatric research. The role of public-private partnerships, influencing factors, challenges, and recent trends in pediatric research are described, with emphasis on funding, drug and device development, physician-scientist training, and diversity. Potential solutions and advocacy opportunities are discussed.

4.
Am J Obstet Gynecol ; 226(5): 607-632, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34968458

RESUMO

Most women in the United States do not meet the recommendations for healthful nutrition and weight before and during pregnancy. Women and providers often ask what a healthy diet for a pregnant woman should look like. The message should be "eat better, not more." This can be achieved by basing diet on a variety of nutrient-dense, whole foods, including fruits, vegetables, legumes, whole grains, healthy fats with omega-3 fatty acids that include nuts and seeds, and fish, in place of poorer quality highly processed foods. Such a diet embodies nutritional density and is less likely to be accompanied by excessive energy intake than the standard American diet consisting of increased intakes of processed foods, fatty red meat, and sweetened foods and beverages. Women who report "prudent" or "health-conscious" eating patterns before and/or during pregnancy may have fewer pregnancy complications and adverse child health outcomes. Comprehensive nutritional supplementation (multiple micronutrients plus balanced protein energy) among women with inadequate nutrition has been associated with improved birth outcomes, including decreased rates of low birthweight. A diet that severely restricts any macronutrient class should be avoided, specifically the ketogenic diet that lacks carbohydrates, the Paleo diet because of dairy restriction, and any diet characterized by excess saturated fats. User-friendly tools to facilitate a quick evaluation of dietary patterns with clear guidance on how to address dietary inadequacies and embedded support from trained healthcare providers are urgently needed. Recent evidence has shown that although excessive gestational weight gain predicts adverse perinatal outcomes among women with normal weight, the degree of prepregnancy obesity predicts adverse perinatal outcomes to a greater degree than gestational weight gain among women with obesity. Furthermore, low body mass index and insufficient gestational weight gain are associated with poor perinatal outcomes. Observational data have shown that first-trimester gain is the strongest predictor of adverse outcomes. Interventions beginning in early pregnancy or preconception are needed to prevent downstream complications for mothers and their children. For neonates, human milk provides personalized nutrition and is associated with short- and long-term health benefits for infants and mothers. Eating a healthy diet is a way for lactating mothers to support optimal health for themselves and their infants.


Assuntos
Ganho de Peso na Gestação , Dieta , Feminino , Humanos , Lactação , Masculino , Estado Nutricional , Obesidade , Gravidez , Verduras , Aumento de Peso
5.
Am J Physiol Endocrinol Metab ; 319(4): E721-E733, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830555

RESUMO

The effect of chronic of hyperinsulinemia in the fetal liver is poorly understood. Here, we produced hyperinsulinemia with euglycemia for ∼8 days in fetal sheep [hyperinsulinemic (INS)] at 0.9 gestation. INS fetuses had increased insulin and decreased oxygen and amino acid (AA) concentrations compared with saline-infused fetuses [control (CON)]. Glucose (whole body) utilization rates were increased, as expected, in INS fetuses. In the liver, however, there were few differences in genes and metabolites related to glucose and lipid metabolism and no activation of insulin signaling proteins (Akt and mTOR). There was increased p-AMPK activation and decreased mitochondrial mass (PGC1A expression, mitochondrial DNA content) in INS livers. Using an unbiased multivariate analysis with 162 metabolites, we identified effects on AA and one-carbon metabolism in the INS liver. Expression of the transaminase BCAT2 and glutaminase genes GLS1 and GLS2 was decreased, supporting decreased AA utilization. We further evaluated the roles of hyperinsulinemia and hypoxemia, both present in INS fetuses, on outcomes in the liver. Expression of PGC1A correlated only with hyperinsulinemia, p-AMPK correlated only with hypoxemia, and other genes and metabolites correlated with both hyperinsulinemia and hypoxemia. In fetal hepatocytes, acute treatment with insulin activated p-Akt and decreased PGC1A, whereas hypoxia activated p-AMPK. Overall, chronic hyperinsulinemia produced greater effects on amino acid metabolism compared with glucose and lipid metabolism and a novel effect on one-carbon metabolism in the fetal liver. These hepatic metabolic responses may result from the downregulation of insulin signaling and antagonistic effects of hypoxemia-induced AMPK activation that develop with chronic hyperinsulinemia.


Assuntos
Hiperinsulinismo/metabolismo , Insulina/metabolismo , Fígado/fisiopatologia , Ovinos/fisiologia , Aminoácidos/metabolismo , Animais , Feminino , Feto/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Hepatócitos/metabolismo , Hiperinsulinismo/fisiopatologia , Metabolismo dos Lipídeos , Fígado/embriologia , Mitocôndrias Hepáticas/metabolismo , Consumo de Oxigênio/fisiologia , Gravidez , Transdução de Sinais
6.
J Nutr ; 150(8): 2061-2069, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32470982

RESUMO

BACKGROUND: Infusion of a complete amino acid mixture into normal late-gestation fetal sheep potentiates glucose-stimulated insulin secretion (GSIS). Leucine acutely stimulates insulin secretion in late-gestation fetal sheep and isolated fetal sheep islets in vitro. OBJECTIVES: We hypothesized that a 9-d leucine infusion would potentiate GSIS in fetal sheep. METHODS: Columbia-Rambouillet fetal sheep at 126 days of gestation received a 9-d leucine infusion to achieve a 50%-100% increase in leucine concentrations or a control infusion. At the end of the infusion we measured GSIS, pancreatic morphology, and expression of pancreatic mRNAs. Pancreatic islet endothelial cells (ECs) were isolated from fetal sheep and incubated with supplemental leucine or vascular endothelial growth factor A (VEGFA) followed by collection of mRNA. Data measured at multiple time points were compared with a repeated-measures 2-factor ANOVA. Data measured at 1 time point were compared using Student's t test or the Mann-Whitney test. RESULTS: Glucose-stimulated insulin concentrations were 80% higher in leucine-infused (LEU) fetuses than in controls (P < 0.05). In the pancreas, LEU fetuses had a higher proportion of islets >5000 µm2 than controls (75% more islets >5000 µm2; P < 0.05) and a larger proportion of the pancreas that stained for ß cells (12% greater; P < 0.05). Pancreatic and pancreatic islet vascularity were both 25% greater in LEU fetuses (P < 0.05). Pancreatic VEGFA and hepatocyte growth factor (HGF) mRNA expressions were 38% and 200% greater in LEU fetuses than in controls (P < 0.05), respectively. In isolated islet ECs, HGF mRNA was 20% and 50% higher after incubation in supplemental leucine (P < 0.05) or VEGFA (P < 0.01), respectively. CONCLUSIONS: A 9-d leucine infusion potentiates fetal GSIS, demonstrating that glucose and leucine act synergistically to stimulate insulin secretion in fetal sheep. A greater proportion of the pancreas being comprised of ß cells and higher pancreatic vascularity contributed to the higher GSIS.


Assuntos
Feto/efeitos dos fármacos , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Animais , Esquema de Medicação , Feminino , Feto/fisiologia , Glucose/metabolismo , Técnica Clamp de Glucose , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/embriologia , Leucina/administração & dosagem , Leucina/farmacologia , Gravidez , Ovinos
7.
J Physiol ; 597(24): 5835-5858, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31665811

RESUMO

KEY POINTS: Previous studies in fetuses with intrauterine growth restriction (IUGR) have shown that adrenergic dysregulation was associated with low insulin concentrations and greater insulin sensitivity. Although whole-body glucose clearance is normal, 1-month-old lambs with IUGR at birth have higher rates of hindlimb glucose uptake, which may compensate for myocyte deficiencies in glucose oxidation. Impaired glucose-stimulated insulin secretion in IUGR lambs is due to lower intra-islet insulin availability and not from glucose sensing. We investigated adrenergic receptor (ADR) ß2 desensitization by administering oral ADRß modifiers for the first month after birth to activate ADRß2 and antagonize ADRß1/3. In IUGR lambs ADRß2 activation increased whole-body glucose utilization rates and insulin sensitivity but had no effect on isolated islet or myocyte deficiencies. IUGR establishes risk for developing diabetes. In IUGR lambs we identified disparities in key aspects of glucose-stimulated insulin secretion and insulin-stimulated glucose oxidation, providing new insights into potential mechanisms for this risk. ABSTRACT: Placental insufficiency causes intrauterine growth restriction (IUGR) and disturbances in glucose homeostasis with associated ß adrenergic receptor (ADRß) desensitization. Our objectives were to measure insulin-sensitive glucose metabolism in neonatal lambs with IUGR and to determine whether daily treatment with ADRß2 agonist and ADRß1/ß3 antagonists for 1 month normalizes their glucose metabolism. Growth, glucose-stimulated insulin secretion (GSIS) and glucose utilization rates (GURs) were measured in control lambs, IUGR lambs and IUGR lambs treated with adrenergic receptor modifiers: clenbuterol atenolol and SR59230A (IUGR-AR). In IUGR lambs, islet insulin content and GSIS were less than in controls; however, insulin sensitivity and whole-body GUR were not different from controls. Of importance, ADRß2 stimulation with ß1/ß3 inhibition increases both insulin sensitivity and whole-body glucose utilization in IUGR lambs. In IUGR and IUGR-AR lambs, hindlimb GURs were greater but fractional glucose oxidation rates and ex vivo skeletal muscle glucose oxidation rates were lower than controls. Glucose transporter 4 (GLUT4) was lower in IUGR and IUGR-AR skeletal muscle than in controls but GLUT1 was greater in IUGR-AR. ADRß2, insulin receptor, glycogen content and citrate synthase activity were similar among groups. In IUGR and IUGR-AR lambs heart rates were greater, which was independent of cardiac ADRß1 activation. We conclude that targeted ADRß2 stimulation improved whole-body insulin sensitivity but minimally affected defects in GSIS and skeletal muscle glucose oxidation. We show that risk factors for developing diabetes are independent of postnatal catch-up growth in IUGR lambs as early as 1 month of age and are inherent to the islets and myocytes.


Assuntos
Retardo do Crescimento Fetal/tratamento farmacológico , Resistência à Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/administração & dosagem , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Antagonistas de Receptores Adrenérgicos beta 2/administração & dosagem , Antagonistas de Receptores Adrenérgicos beta 2/farmacocinética , Antagonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Animais , Atenolol/administração & dosagem , Atenolol/farmacologia , Atenolol/uso terapêutico , Células Cultivadas , Clembuterol/administração & dosagem , Clembuterol/farmacologia , Clembuterol/uso terapêutico , Feminino , Retardo do Crescimento Fetal/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Músculo Esquelético/metabolismo , Ovinos
8.
Am J Physiol Endocrinol Metab ; 317(1): E1-E10, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964701

RESUMO

Fetal hypoxemia is associated with pregnancy conditions that cause an early activation of fetal glucose production. However, the independent role of hypoxemia to activate this pathway is not well understood. We hypothesized that fetal hypoxemia would activate fetal glucose production by decreasing umbilical glucose uptake and increasing counter-regulatory hormone concentrations. We induced hypoxemia for 9 days with maternal tracheal N2 gas insufflation to reduce maternal and fetal arterial Po2 by ~20% (HOX) compared with fetuses from ewes receiving intratracheal compressed air (CON). At 0.9 of gestation, fetal metabolic studies were performed (n = 7 CON, 11 HOX). Umbilical blood flow rates, net fetal oxygen and glucose uptake rates, and fetal arterial plasma glucose concentrations were not different between the two groups. Fetal glucose utilization rates were lower in HOX versus CON fetuses but not different from umbilical glucose uptake rates, demonstrating the absence of endogenous glucose production. In liver tissue, mRNA expression of gluconeogenic genes G6PC (P < 0.01) and PCK1 (P = 0.06) were six- and threefold greater in HOX fetuses versus CON fetuses. Increased fetal norepinephrine and cortisol concentrations and hepatic G6PC and PCK1 expression were inversely related to fetal arterial Po2. These findings support a role for fetal hypoxemia to act with counter-regulatory hormones to potentiate fetal hepatic gluconeogenic gene expression. However, in the absence of decreased net fetal glucose uptake rates and plasma glucose concentrations, hypoxemia-induced gluconeogenic gene activation is not sufficient to activate fetal glucose production.


Assuntos
Feto/metabolismo , Gluconeogênese/genética , Hipóxia/genética , Hipóxia/metabolismo , Fígado/metabolismo , Complicações na Gravidez , Ovinos , Animais , Embrião de Mamíferos , Feminino , Sangue Fetal/metabolismo , Desenvolvimento Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Glucose/metabolismo , Hipóxia/veterinária , Fígado/embriologia , Oxigênio/metabolismo , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo , Complicações na Gravidez/veterinária , Ovinos/embriologia , Ovinos/genética , Ovinos/metabolismo
9.
Int J Obes (Lond) ; 43(9): 1747-1758, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30622311

RESUMO

BACKGROUND: Excessive gestational weight gain (EGWG) closely associates with postpartum obesity. However, the causal role of EGWG in postpartum obesity has not been experimentally verified. The objective of this study was to determine whether and how EGWG causes long-term postpartum obesity. METHODS: C57BL/6 mice were fed with high-fat diet during gestation (HFFDG) or control chow, then their body composition and energy metabolism were monitored after delivery. RESULTS: We found that HFFDG significantly increased gestational weight gain. After delivery, adiposity of HFFDG-treated mice (Preg-HF) quickly recovered to the levels of controls. However, 3 months after parturition, Preg-HF mice started to gain significantly more body fat even with regular chow. The increase of body fat of Preg-HF mice was progressive with aging and by 9 months after delivery had increased 2-fold above the levels of controls. The expansion of white adipose tissue (WAT) of Preg-HF mice was manifested by hyperplasia in visceral fat and hypertrophy in subcutaneous fat. Preg-HF mice developed low energy expenditure and UCP1 expression in interscapular brown adipose tissue (iBAT) in later life. Although blood estrogen concentrations were similar between Preg-HF and control mice, a significant decrease in estrogen receptor α (ERα) expression and hypermethylation of the ERα promoter was detected in the fat of Preg-HF mice 9 months after delivery. Interestingly, hypermethylation of ERα promoter and low ERα expression were only detected in adipocyte progenitor cells in both iBAT and WAT of Preg-HF mice at the end of gestation. CONCLUSIONS: These results demonstrate that HFFDG causes long-term postpartum obesity independent of early postpartum fat retention. This study also suggests that HFFDG adversely programs long-term postpartum energy metabolism by epigenetically reducing estrogen signaling in both BAT and WAT.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ganho de Peso na Gestação/fisiologia , Obesidade/fisiopatologia , Período Pós-Parto/fisiologia , Aumento de Peso/fisiologia , Animais , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Am J Physiol Regul Integr Comp Physiol ; 316(5): R427-R440, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30758974

RESUMO

Intrauterine growth-restricted (IUGR) fetal sheep have increased hepatic glucose production (HGP) that is resistant to suppression during a hyperinsulinemic-isoglycemic clamp (insulin clamp). We hypothesized that the IUGR fetal liver would have activation of metabolic and signaling pathways that support HGP and inhibition of insulin-signaling pathways. To test this, we used transcriptomic profiling with liver samples from control (CON) and IUGR fetuses receiving saline or an insulin clamp. The IUGR liver had upregulation of genes associated with gluconeogenesis/glycolysis, transcription factor regulation, and cytokine responses and downregulation of genes associated with cholesterol synthesis, amino acid degradation, and detoxification pathways. During the insulin clamp, genes associated with cholesterol synthesis and innate immune response were upregulated in CON and IUGR. There were 20-fold more genes differentially expressed during the insulin clamp in IUGR versus CON. These genes were associated with proteasome activation and decreased amino acid and lipid catabolism. We found increased TRB3, JUN, MYC, and SGK1 expression and decreased PTPRD expression as molecular targets for increased HGP in IUGR. As candidate genes for resistance to insulin's suppression of HGP, expression of JUN, MYC, and SGK1 increased more during the insulin clamp in CON compared with IUGR. Metabolites were measured with 1H-nuclear magnetic resonance and support increased amino acid concentrations, decreased mitochondria activity and energy state, and increased cell stress in the IUGR liver. These results demonstrate a robust response, beyond suppression of HGP, during the insulin clamp and coordinate responses in glucose, amino acid, and lipid metabolism in the IUGR fetus.


Assuntos
Glicemia/metabolismo , Metabolismo Energético , Retardo do Crescimento Fetal/metabolismo , Técnica Clamp de Glucose , Resistência à Insulina , Insulina/sangue , Fígado/metabolismo , Animais , Biomarcadores/sangue , Western Blotting , Modelos Animais de Doenças , Metabolismo Energético/genética , Feminino , Retardo do Crescimento Fetal/sangue , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/fisiopatologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Idade Gestacional , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Fígado/embriologia , Gravidez , Espectroscopia de Prótons por Ressonância Magnética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carneiro Doméstico , Transcriptoma
11.
Am J Physiol Regul Integr Comp Physiol ; 317(5): R615-R629, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31483682

RESUMO

In a sheep model of intrauterine growth restriction (IUGR) produced from placental insufficiency, late gestation fetuses had smaller skeletal muscle mass, myofiber area, and slower muscle protein accretion rates compared with normally growing fetuses. We hypothesized that IUGR fetal muscle develops adaptations that divert amino acids (AAs) from protein accretion and activate pathways that conserve substrates for other organs. We placed hindlimb arterial and venous catheters into late gestation IUGR (n = 10) and control (CON, n = 8) fetal sheep and included an external iliac artery flow probe to measure hindlimb AA uptake rates. Arterial and venous plasma samples and biceps femoris muscle were analyzed by mass spectrometry-based metabolomics. IUGR fetuses had greater abundance of metabolites enriched within the alanine, aspartate, and glutamate metabolism pathway compared with CON. Net uptake rates of branched-chain AA (BCAA) were lower by 42%-73%, and muscle ammoniagenic AAs (alanine, glycine, and glutamine) were lower by 107%-158% in IUGR hindlimbs versus CON. AA uptake rates correlated with hindlimb weight; the smallest hindlimbs showed net release of ammoniagenic AAs. Gene expression levels indicated a decrease in BCAA catabolism in IUGR muscle. Plasma purines were lower and plasma uric acid was higher in IUGR versus CON, possibly a reflection of ATP conservation. We conclude that IUGR skeletal muscle has lower BCAA uptake and develops adaptations that divert AAs away from protein accretion into alternative pathways that sustain global energy production and nitrogen disposal in the form of ammoniagenic AAs for metabolism in other organs.


Assuntos
Aminoácidos/metabolismo , Extremidade Inferior/fisiopatologia , Músculo Esquelético/metabolismo , Insuficiência Placentária/tratamento farmacológico , Alanina/metabolismo , Animais , Feminino , Retardo do Crescimento Fetal/metabolismo , Feto/metabolismo , Membro Posterior/metabolismo , Extremidade Inferior/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiopatologia , Insuficiência Placentária/metabolismo , Gravidez , Ovinos
13.
J Physiol ; 596(1): 67-82, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28940557

RESUMO

KEY POINTS: Adults who were affected by intrauterine growth restriction (IUGR) suffer from reductions in muscle mass, which may contribute to insulin resistance and the development of diabetes. We demonstrate slower hindlimb linear growth and muscle protein synthesis rates that match the reduced hindlimb blood flow and oxygen consumption rates in IUGR fetal sheep. These adaptations resulted in hindlimb blood flow rates in IUGR that were similar to control fetuses on a weight-specific basis. Net hindlimb glucose uptake and lactate output rates were similar between groups, whereas amino acid uptake was significantly lower in IUGR fetal sheep. Among all fetuses, blood O2 saturation and plasma glucose, insulin and insulin-like growth factor-1 were positively associated and norepinephrine was negatively associated with hindlimb weight. These results further our understanding of the metabolic and hormonal adaptations to reduced oxygen and nutrient supply with placental insufficiency that develop to slow hindlimb growth and muscle protein accretion. ABSTRACT: Reduced skeletal muscle mass in the fetus with intrauterine growth restriction (IUGR) persists into adulthood and may contribute to increased metabolic disease risk. To determine how placental insufficiency with reduced oxygen and nutrient supply to the fetus affects hindlimb blood flow, substrate uptake and protein accretion rates in skeletal muscle, late gestation control (CON) (n = 8) and IUGR (n = 13) fetal sheep were catheterized with aortic and femoral catheters and a flow transducer around the external iliac artery. Muscle protein kinetic rates were measured using isotopic tracers. Hindlimb weight, linear growth rate, muscle protein accretion rate and fractional synthetic rate were lower in IUGR compared to CON (P < 0.05). Absolute hindlimb blood flow was reduced in IUGR (IUGR: 32.9 ± 5.6 ml min-1 ; CON: 60.9 ± 6.5 ml min-1 ; P < 0.005), although flow normalized to hindlimb weight was similar between groups. Hindlimb oxygen consumption rate was lower in IUGR (IUGR: 10.4 ± 1.4 µmol min-1  100 g-1 ; CON: 14.7 ± 1.3 µmol min-1  100 g-1 ; P < 0.05). Hindlimb glucose uptake and lactate output rates were similar between groups, whereas amino acid uptake was lower in IUGR (IUGR: 1.3 ± 0.5 µmol min-1  100 g-1 ; CON: 2.9 ± 0.2 µmol min-1  100 g-1 ; P < 0.05). Blood O2 saturation (r2  = 0.80, P < 0.0001) and plasma glucose (r2  = 0.68, P < 0.0001), insulin (r2  = 0.40, P < 0.005) and insulin-like growth factor (IGF)-1 (r2  = 0.80, P < 0.0001) were positively associated and norepinephrine (r2  = 0.59, P < 0.0001) was negatively associated with hindlimb weight. Slower hindlimb linear growth and muscle protein synthesis rates match reduced hindlimb blood flow and oxygen consumption rates in the IUGR fetus. Metabolic adaptations to slow hindlimb growth are probably hormonally-mediated by mechanisms that include increased fetal norepinephrine and reduced IGF-1 and insulin.


Assuntos
Retardo do Crescimento Fetal/fisiopatologia , Membro Posterior/crescimento & desenvolvimento , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Insuficiência Placentária/etiologia , Biossíntese de Proteínas , Animais , Feminino , Membro Posterior/irrigação sanguínea , Membro Posterior/patologia , Masculino , Músculo Esquelético/patologia , Insuficiência Placentária/metabolismo , Insuficiência Placentária/patologia , Gravidez , Ovinos
14.
Am J Physiol Endocrinol Metab ; 315(6): E1224-E1231, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30277793

RESUMO

To determine the role of UCP1-mediated thermogenesis in controlling maternal metabolic adaptation to pregnancy, energy metabolism of C57BL/6 wild-type (WT) and Ucp1 gene knockout ( Ucp1-/-) mice was studied during pregnancy. With the progression of pregnancy, maternal energy expenditure rates (EERs), expression of UCP1, and core body temperature steadily declined in WT dams. Despite no significant alterations in core body temperature and weight gain during pregnancy, Ucp1-/- dams exhibited lower rates in EER decline. High-fat (HF) feeding not only robustly increased maternal UCP1 expression and core body temperature but also abolished gestation-suppressed EER in WT dams. However, HF-increased EERs were significantly attenuated in Ucp1-/- dams. Significantly increased fetal body weights and fetal/placental weight ratio were detected in fetuses from Ucp1-/- dams compared with fetuses from WT dams. Markedly increased expression levels of glucose transporter 1 and amino acid transporters were also observed in placentas from Ucp1-/- dams. Furthermore, blood glucose concentrations of fetuses from Ucp1-/- dams were significantly higher than those of fetuses from WT dams, indicating that maternal UCP1 has an inhibitory effect on placental efficiency and fetal growth. Taken all together, this study demonstrated that maternal brown adipose tissue plays an important role in controlling maternal metabolic adaptation and placental nutrient transport.


Assuntos
Adaptação Fisiológica/fisiologia , Tecido Adiposo Marrom/metabolismo , Desenvolvimento Fetal/fisiologia , Placenta/metabolismo , Termogênese/fisiologia , Animais , Feminino , Camundongos , Camundongos Knockout , Gravidez , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
15.
Am J Physiol Endocrinol Metab ; 315(6): E1143-E1153, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30205012

RESUMO

Overcoming impaired growth in an intrauterine growth-restricted (IUGR) fetus has potential to improve neonatal morbidity, long-term growth, and metabolic health outcomes. The extent to which fetal anabolic capacity persists as the IUGR condition progresses is not known. We subjected fetal sheep to chronic placental insufficiency and tested whether prolonged amino acid infusion would increase protein accretion in these IUGR fetuses. IUGR fetal sheep were infused for 10 days with either mixed amino acids providing ~2 g·kg-1·day-1 (IUGR-AA) or saline (IUGR-Sal) during late gestation. At the end of the infusion, fetal plasma leucine, isoleucine, lysine, methionine, and arginine concentrations were higher in the IUGR-AA than IUGR-Sal group ( P < 0.05). Fetal plasma glucose, oxygen, insulin, IGF-1, cortisol, and norepinephrine concentrations were similar between IUGR groups, but glucagon concentrations were fourfold higher in the IUGR-AA group ( P < 0.05). Net umbilical amino acid uptake rate did not differ between IUGR groups; thus the total amino acid delivery rate (net umbilical amino acid uptake + infusion rate) was higher in the IUGR-AA than IUGR-Sal group (30 ± 4 vs. 19 ± 1 µmol·kg-1·min-1, P < 0.05). Net umbilical glucose, lactate, and oxygen uptake rates were similar between IUGR groups. Fetal leucine oxidation rate, measured using a leucine tracer, was higher in the IUGR-AA than IUGR-Sal group (2.5 ± 0.3 vs. 1.7 ± 0.3 µmol·kg-1·min-1, P < 0.05). Fetal protein accretion rate was not statistically different between the IUGR groups (1.6 ± 0.4 and 0.8 ± 0.3 µmol·kg-1·min-1 in IUGR-AA and IUGR-Sal, respectively) due to variability in response to amino acids. Prolonged amino acid infusion into IUGR fetal sheep increased leucine oxidation rates with variable anabolic response.


Assuntos
Aminoácidos/uso terapêutico , Retardo do Crescimento Fetal/tratamento farmacológico , Leucina/metabolismo , Insuficiência Placentária/tratamento farmacológico , Aminoácidos/farmacologia , Animais , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Retardo do Crescimento Fetal/metabolismo , Oxirredução/efeitos dos fármacos , Placenta/efeitos dos fármacos , Placenta/metabolismo , Insuficiência Placentária/metabolismo , Gravidez , Ovinos
16.
Am J Obstet Gynecol ; 219(4): 367.e1-367.e7, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29959933

RESUMO

Use of oral agents to treat gestational diabetes mellitus remains controversial. Recent recommendations from the Society for Maternal-Fetal Medicine assert that metformin may be a safe first-line alternative to insulin for gestational diabetes mellitus treatment and preferable to glyburide. However, several issues should give pause to the widespread adoption of metformin use during pregnancy. Fetal concentrations of metformin are equal to maternal, and metformin can inhibit growth, suppress mitochondrial respiration, have epigenetic modifications on gene expression, mimic fetal nutrient restriction, and alter postnatal gluconeogenic responses. Because both the placenta and fetus express metformin transporters and exhibit high mitochondrial activity, these properties raise important questions about developmental programming of metabolic disease in offspring. Animal studies have demonstrated that prenatal metformin exposure results in adverse long-term outcomes on body weight and metabolism. Two recent clinical randomized controlled trials in women with gestational diabetes mellitus or polycystic ovary syndrome provide evidence that metformin exposure in utero may produce a metabolic phenotype that increases childhood weight or obesity. These developmental programming effects challenge the conclusion that metformin is equivalent to insulin. Although the Society for Maternal-Fetal Medicine statement endorsed metformin over glyburide if oral agents are used, there are few studies directly comparing the 2 agents and it is not clear that metformin alone is superior to glyburide. Moreover, it should be noted that prior clinical studies have dosed glyburide in a manner inconsistent with its pharmacokinetic properties, resulting in poor glycemic control and high rates of maternal hypoglycemia. We concur with the American Diabetes Association and American Congress of Obstetricians and Gynecologists, which recommend insulin as the preferred agent, but we believe that it is premature to embrace metformin as equivalent to insulin or superior to glyburide. Due to the uncertainty of the long-term metabolic risks of either metformin or glyburide, we call for carefully controlled studies that optimize oral medication dosing according to their pharmacodynamic and pharmacokinetic properties in pregnancy, appropriately target medications based on individual patterns of hyperglycemia, and follow the offspring long-term for metabolic risk.


Assuntos
Diabetes Gestacional/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Guias de Prática Clínica como Assunto , Feminino , Humanos , Hipoglicemiantes/efeitos adversos , Metformina/efeitos adversos , Obstetrícia , Gravidez , Sociedades Médicas , Estados Unidos
17.
Pediatr Res ; 84(3): 328-332, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29976967

RESUMO

BACKGROUND: The amount of federal dollars allocated to improving the health of our pediatric population can serve as an indicator of the priority placed on child well-being. Although Congress has established novel mechanisms that marginally increase pediatric research funding, the pediatric research portfolio is facing an increasingly uncertain fate. METHODS: This work examines pediatric, perinatal and pediatric research initiative (PRI) spending using data collected by the NIH that uses the novel research, condition and disease categorization system. Further, this work reports on recent policy developments in pediatric biomedical research and offers recommendations to insulate this portfolio from future uncertainty. RESULTS: Federal support for pediatric research has declined with average annual growth rates of NIH pediatric spending dropping from 12.8% (FY 1998-2003) to 1.7% (FY 2004-2015). After taking into account Biomedical Research and Development Price Index growth, the pediatric research portfolio's purchasing power has declined by 15.9% (FY 2004-2015). CONCLUSION: Federal support for pediatric biomedical research has plateaued in nominal terms and declined significantly in real terms. Future congressional action will be necessary to protect gains and to expand the capacity of the pediatric portfolio.


Assuntos
Pesquisa Biomédica/tendências , Pediatria/tendências , Apoio à Pesquisa como Assunto , Adolescente , Pesquisa Biomédica/economia , Criança , Proteção da Criança , Pré-Escolar , Política de Saúde , Humanos , Lactente , Recém-Nascido , National Institutes of Health (U.S.) , Pediatria/economia , Incerteza , Estados Unidos
19.
Am J Physiol Regul Integr Comp Physiol ; 313(2): R101-R109, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28490449

RESUMO

Intrauterine growth restriction (IUGR) is associated with persistent metabolic complications, but information is limited for IUGR infants. We determined glucose-stimulated insulin secretion (GSIS) and insulin sensitivity in young lambs with placental insufficiency-induced IUGR. Lambs with hyperthermia-induced IUGR (n = 7) were compared with control lambs (n = 8). GSIS was measured at 8 ± 1 days of age, and at 15 ± 1 days, body weight-specific glucose utilization rates were measured with radiolabeled d-glucose during a hyperinsulinemic-euglycemic clamp (HEC). IUGR lambs weighed 23% less (P < 0.05) than controls at birth. Fasting plasma glucose and insulin concentrations were not different between IUGR and controls for either study. First-phase insulin secretion was enhanced 2.3-fold in IUGR lambs compared with controls. However, second-phase insulin concentrations, glucose-potentiated arginine-stimulated insulin secretion, and ß-cell mass were not different, indicating that IUGR ß-cells have an intrinsic enhancement in acute GSIS. Compared with controls, IUGR lambs had higher body weight-specific glucose utilization rates and greater insulin sensitivity at fasting (1.6-fold) and hyperinsulinemic periods (2.4-fold). Improved insulin sensitivity for glucose utilization was not due to differences in skeletal muscle insulin receptor and glucose transporters 1 and 4 concentrations. Plasma lactate concentrations during HEC were elevated in IUGR lambs compared with controls, but no differences were found for glycogen content or citrate synthase activity in liver and muscle. Greater insulin sensitivity for glucose utilization and enhanced acute GSIS in young lambs are predicted from fetal studies but may promote conditions that exaggerate glucose disposal and lead to episodes of hypoglycemia in IUGR infants.


Assuntos
Glicemia/metabolismo , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/fisiopatologia , Resistência à Insulina , Insulina/metabolismo , Insuficiência Placentária/fisiopatologia , Animais , Animais Recém-Nascidos , Feminino , Secreção de Insulina , Masculino , Gravidez , Ovinos
20.
Am J Physiol Regul Integr Comp Physiol ; 312(5): R654-R663, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179229

RESUMO

Acute amino acid (AA) infusion increases AA oxidation rates in normal late gestation fetal sheep. Because the fetal oxygen consumption rate does not change with increased AA oxidation, we hypothesized that AA infusion would suppress glucose oxidation pathways and that the additional carbon supply from AA would activate hepatic glucose production. To test this, late gestation fetal sheep were infused intravenously for 3 h with saline or exogenous AA (AA). Glucose tracer metabolic studies were performed and skeletal muscle and liver tissues samples were collected. AA infusion increased fetal arterial plasma branched chain AA, cortisol, and glucagon concentrations. Fetal glucose utilization rates were similar between basal and AA periods, yet the fraction of glucose oxidized and the glucose oxidation rate were decreased by 40% in the AA period. AA infusion increased expression of PDK4, an inhibitor of glucose oxidation, nearly twofold in muscle and liver. In liver, AA infusion tended to increase PCK1 gluconeogenic gene and PCK1 correlated with plasma cortisol concentrations. AA infusion also increased liver mRNA expression of the lactate transporter gene (MCT1), protein expression of GLUT2 and LDHA, and phosphorylation of AMPK, 4EBP1, and S6 proteins. In isolated fetal hepatocytes, AA supplementation increased glucose production and PCK1, LDHA, and MCT1 gene expression. These results demonstrate that AA infusion into fetal sheep competitively suppresses glucose oxidation and potentiates hepatic glucose production. These metabolic patterns support flexibility in fetal metabolism in response to increased nutrient substrate supply while maintaining a relatively stable rate of oxidative metabolism.


Assuntos
Aminoácidos/administração & dosagem , Glucose/metabolismo , Fígado/embriologia , Fígado/metabolismo , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Animais , Feminino , Feto/efeitos dos fármacos , Feto/metabolismo , Idade Gestacional , Infusões Intravenosas , Fígado/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Gravidez , Ovinos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA