Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Molecules ; 28(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37764458

RESUMO

Herein, we report the copper-catalyzed dehydrogenative C(sp2)-N bond formation of 4-pentenamides via nitrogen-centered radicals. This reaction provides a straightforward and efficient preparation method for γ-alkylidene-γ-lactams. Notably, we could controllably synthesize α,ß-unsaturated- or α,ß-saturated-γ-alkylidene-γ-lactams depending on the reaction conditions.

2.
J Chem Phys ; 155(7): 075101, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418942

RESUMO

Intercellular fluids in living organisms contain high concentrations of macromolecules such as nucleic acid and protein. Over the past few decades, several studies have examined membraneless organelles in terms of liquid-liquid phase separation. These studies have investigated aggregation/attraction among a rich variety of biomolecules. Here, we studied the association between the polymerization/depolymerization of actin, interconversion between monomeric (G-actin) and filamentous states (F-actin), and water/water phase separation in a binary polymer solution using polyethylene glycol (PEG) and dextran (DEX). We found that actin, which is a representative cytoskeleton, changes its distribution in a PEG/DEX binary solution depending on its polymerization state: monomeric G-actin is distributed homogeneously throughout the solution, whereas polymerized F-actin is localized only within the DEX-rich phase. We extended our study by using fragmin, which is a representative actin-severing and -depolymerizing factor. It took hours to restore a homogeneous actin distribution from localization within the DEX-rich phase, even with the addition of fragmin in an amount that causes complete depolymerization. In contrast, when actin that had been depolymerized by fragmin in advance was added to a solution with microphase-separation, F-actin was found in DEX-rich phase droplets. The micro-droplets tended to deform into a non-spherical morphology under conditions where they contained F-actin. These findings suggest that microphase-separation is associated with the dynamics of polymerization and localization of the actin cytoskeleton. We discuss our observations by taking into consideration the polymer depletion effect.


Assuntos
Actinas/química , Multimerização Proteica , Dextranos/química , Modelos Moleculares , Polietilenoglicóis/química , Estrutura Quaternária de Proteína , Soluções , Água/química
3.
Entropy (Basel) ; 24(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35052073

RESUMO

When a network has relay nodes, there is a risk that a part of the information is leaked to an untrusted relay. Secure network coding (secure NC) is known as a method to resolve this problem, which enables the secrecy of the message when the message is transmitted over a noiseless network and a part of the edges or a part of the intermediate (untrusted) nodes are eavesdropped. If the channels on the network are noisy, the error correction is applied to noisy channels before the application of secure NC on an upper layer. In contrast, secure physical layer network coding (secure PLNC) is a method to securely transmit a message by a combination of coding operation on nodes when the network is composed of set of noisy channels. Since secure NC is a protocol on an upper layer, secure PLNC can be considered as a cross-layer protocol. In this paper, we compare secure PLNC with a simple combination of secure NC and error correction over several typical network models studied in secure NC.

4.
Chembiochem ; 21(23): 3323-3328, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32667694

RESUMO

Recently, liquid-liquid phase separation (LLPS) has attracted considerable attention among researchers in the life sciences as a plausible mechanism for the generation of microstructures inside cells. LLPS occurs through multiple nonspecific interactions and does not always require a lock-and-key interaction with a binary macromolecular solution. The remarkable features of LLPS include the non-uniform localization and concentration of solutes, resulting in the ability to isolate certain chemical systems and thereby parallelize multiple chemical reactions within the limited space of a living cell. We report that, by using the macromolecules, poly(ethylene glycol) (PEG) and dextran, that exhibit LLPS in an aqueous solution, cell-sized liposomes are spontaneously formed therein in the presence of phospholipids. In this system, LLPS is generated through the depletion effect of macromolecules. The results showed that cell-like microdroplets entrapping DNA wrapped by a phospholipid layer emerge in a self-organized manner.


Assuntos
Dextranos/química , Gotículas Lipídicas/química , Polietilenoglicóis/química , DNA/química , Substâncias Macromoleculares/química , Tamanho da Partícula , Fosfolipídeos/química , Soluções , Água/química
5.
Phys Rev Lett ; 125(15): 150402, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095616

RESUMO

As a modern approach for the foundation of quantum theory, existing studies of general probabilistic theories gave various models of states and measurements that are quite different from quantum theory. In this Letter, to seek a more realistic situation, we investigate models approximately close to quantum theory. We define larger measurement classes that are smoothly connected with the class of POVMs via a parameter, and investigate the performance of perfect discrimination. As a result, we give a sufficient condition of perfect discrimination, which shows a significant improvement beyond the class of POVMs.

6.
Phys Rev Lett ; 124(12): 120502, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32281862

RESUMO

We introduce a resource theory of channels relevant to communication via quantum channels, in which the set of constant channels-useless channels for communication tasks-are considered as free resources. We find that our theory with such a simple structure is useful to address central problems in quantum Shannon theory-in particular, we provide a converse bound for the one-shot nonsignaling assisted classical capacity that naturally leads to its strong converse property, as well as obtain the one-shot channel simulation cost with nonsignaling assistance. We clarify an intimate connection between the nonsignaling assistance and our formalism by identifying the nonsignaling assisted channel coding with the channel transformation under the maximal set of resource nongenerating superchannels, providing a physical characterization of the latter. Our results provide new perspectives and concise arguments to those problems, connecting the recently developed fields of resource theories to "classic" settings in quantum information theory and shedding light on the validity of resource theories of channels as effective tools to address practical problems.

7.
Chemistry ; 26(20): 4496-4499, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32073167

RESUMO

ß-Lactams are important structural motifs because of their ubiquity in natural products and pharmaceuticals. We report herein a Cu-catalyzed intramolecular oxidative C(sp3 )-H amidation for the synthesis of ß-lactams using tBuOOtBu. This method is based on Kharasch-Sosnovsky amidation and does not require prefunctionalization of C(sp3 )-H bonds or the installation of a directing group, thereby allowing for the straightforward synthesis of ß-lactams. Our intramolecular functionalization protocol can be extended to diverse benzylic C(sp3 )-H bonds and shows excellent functional-group tolerance.


Assuntos
Cobre/química , beta-Lactamas/síntese química , Catálise , Ciclização , Estrutura Molecular , Oxirredução , Estresse Oxidativo , beta-Lactamas/química
8.
Entropy (Basel) ; 22(4)2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33286234

RESUMO

We derive finite-length bounds for two problems with Markov chains: source coding with side-information where the source and side-information are a joint Markov chain and channel coding for channels with Markovian conditional additive noise. For this purpose, we point out two important aspects of finite-length analysis that must be argued when finite-length bounds are proposed. The first is the asymptotic tightness, and the other is the efficient computability of the bound. Then, we derive finite-length upper and lower bounds for the coding length in both settings such that their computational complexity is low. We argue the first of the above-mentioned aspects by deriving the large deviation bounds, the moderate deviation bounds, and second-order bounds for these two topics and show that these finite-length bounds achieve the asymptotic optimality in these senses. Several kinds of information measures for transition matrices are introduced for the purpose of this discussion.

9.
Entropy (Basel) ; 22(9)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-33286822

RESUMO

We discuss the effect of sequential error injection on information leakage under a network code. We formulate a network code for the single transmission setting and the multiple transmission setting. Under this formulation, we show that the eavesdropper cannot increase the power of eavesdropping by sequential error injection when the operations in the network are linear operations. We demonstrated the usefulness of this reduction theorem by applying a concrete example of network.

10.
Phys Rev Lett ; 123(26): 260504, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31951437

RESUMO

Efficient verification of pure quantum states in the adversarial scenario is crucial to many applications in quantum information processing, such as blind measurement-based quantum computation and quantum networks. However, little is known about this topic so far. Here, we establish a general framework for verifying pure quantum states in the adversarial scenario and clarify the resource cost. Moreover, we propose a simple and general recipe to constructing efficient verification protocols for the adversarial scenario from protocols for the nonadversarial scenario. With this recipe, arbitrary pure states can be verified in the adversarial scenario with almost the same efficiency as in the nonadversarial scenario. Many important quantum states can be verified in the adversarial scenario using local projective measurements with unprecedented high efficiencies.

11.
Chembiochem ; 19(13): 1370-1374, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29676062

RESUMO

The effect of binary hydrophilic polymers on a pair of representative bio-macromolecules in a living cell has been examined. The results showed that these bio-macromolecules exhibited specific localization in cell-sized droplets that were spontaneously formed through water/water microphase segregation under crowding conditions with coexisting polymers. In these experiments, a simple binary polymer system with poly(ethylene glycol) (PEG) and dextran (DEX) was used. Under the conditions of microphase segregation, DNA was entrapped within cell-sized droplets rich in DEX. Similarly, F-actin, linearly polymerized actin, was entrapped specifically within microdroplets rich in DEX, whereas G-actin, a monomeric actin, was distributed evenly inside and outside these droplets. This study has been extended to a system with both F-actin and DNA, and it was found that DNA molecules were localized separately from aligned F-actin proteins to create microdomains inside microdroplets, reflecting the self-emergence of a cellular morphology similar to a stage of cell division.


Assuntos
Actinas/química , Células Artificiais/química , DNA/química , Água/química , Animais , Galinhas , Dextranos/química , Polietilenoglicóis/química
12.
Phys Rev Lett ; 120(3): 030404, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400536

RESUMO

A quantum measurement is Fisher symmetric if it provides uniform and maximal information on all parameters that characterize the quantum state of interest. Using (complex projective) 2-designs, we construct measurements on a pair of identically prepared quantum states that are Fisher symmetric for all pure states. Such measurements are optimal in achieving the minimal statistical error without adaptive measurements. We then determine all collective measurements on a pair that are Fisher symmetric for the completely mixed state and for all pure states simultaneously. For a qubit, these measurements are Fisher symmetric for all states. The minimal optimal measurements are tied to the elusive symmetric informationally complete measurements, which reflects a deep connection between local symmetry and global symmetry. In the study, we derive a fundamental constraint on the Fisher information matrix of any collective measurement on a pair, which offers a useful tool for characterizing the tomographic efficiency of collective measurements.

13.
Biol Pharm Bull ; 41(3): 288-293, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29491204

RESUMO

For the development of artificial cell-like machinery, liposomes encapsulating cytoskeletons have drawn much recent attention. However, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons. We succeeded in reversibly changing the shape of cell-sized giant vesicles by controlling the polymerization/depolymerization state of cytoskeletal microtubules that were encapsulated in the vesicles using pressure changes. The result indicates that it is possible to manipulate artificial cell models composed of molecules such as lipids and proteins. The findings obtained in this study will be helpful in clarifying the details of cooperation between cytoskeletal dynamics and morphogenesis of biological membranes and in improving the design and construction of further advanced artificial cell-like machinery, such as drug-delivery systems. In addition, the experimental system used in this study can be applied to research to elucidate the adaptive strategy of living organisms to external stimuli and extreme conditions such as osmotic stress and high-pressure environments like the deep sea.


Assuntos
Células Artificiais , Vesículas Revestidas , Microtúbulos/química , Animais , Citoesqueleto/química , Citoesqueleto/ultraestrutura , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Pressão Hidrostática , Bicamadas Lipídicas , Lipossomos/química , Pressão Osmótica , Tamanho da Partícula , Suínos , Tubulina (Proteína)/química
14.
Phys Rev Lett ; 118(16): 160502, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28474916

RESUMO

We investigate the ability of a quantum measurement device to discriminate two states or, generically, two hypotheses. In full generality, the measurement can be performed a number n of times, and arbitrary preprocessing of the states and postprocessing of the obtained data are allowed. There is an intrinsic error associated with the measurement device, which we aim to quantify, that limits its discrimination power. We minimize various error probabilities (averaged or constrained) over all pairs of n-partite input states. These probabilities, or their exponential rates of decrease in the case of large n, give measures of the discrimination power of the device. For the asymptotic rate of the averaged error probability, we obtain a Chernoff-type bound, dual to the standard Chernoff bound for which the state pair is fixed and the optimization is over all measurements. The key point in the derivation is that identical copies of input states become optimal in asymptotic settings. Optimal asymptotic rates are also obtained for constrained error probabilities, dual to Stein's lemma and Hoeffding's bound. We further show that adaptive protocols where the state preparer gets feedback from the measurer do not improve the asymptotic rates. These rates thus quantify the ultimate discrimination power of a measurement device.

15.
Artigo em Inglês | MEDLINE | ID: mdl-28302962

RESUMO

Coding technology is used in several information processing tasks. In particular, when noise during transmission disturbs communications, coding technology is employed to protect the information. However, there are two types of coding technology: coding in classical information theory and coding in quantum information theory. Although the physical media used to transmit information ultimately obey quantum mechanics, we need to choose the type of coding depending on the kind of information device, classical or quantum, that is being used. In both branches of information theory, there are many elegant theoretical results under the ideal assumption that an infinitely large system is available. In a realistic situation, we need to account for finite size effects. The present paper reviews finite size effects in classical and quantum information theory with respect to various topics, including applied aspects.


Assuntos
Teoria da Informação , Modelos Teóricos , Teoria Quântica , Tecnologia sem Fio
16.
Phys Rev Lett ; 116(7): 070403, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26943513

RESUMO

We propose a general framework for constructing universal steering criteria that are applicable to arbitrary bipartite states and measurement settings of the steering party. The same framework is also useful for studying the joint measurement problem. Based on the data-processing inequality for an extended Rényi relative entropy, we then introduce a family of steering inequalities, which detect steering much more efficiently than those inequalities known before. As illustrations, we show unbounded violation of a steering inequality for assemblages constructed from mutually unbiased bases and establish an interesting connection between maximally steerable assemblages and complete sets of mutually unbiased bases. We also provide a single steering inequality that can detect all bipartite pure states of full Schmidt rank. In the course of study, we generalize a number of results intimately connected to data-processing inequalities, which are of independent interest.

17.
Phys Rev Lett ; 117(9): 090502, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27610836

RESUMO

We establish the ultimate limits to the compression of sequences of identically prepared qubits. The limits are determined by Holevo's information quantity and are attained through use of the optimal universal cloning machine, which finds here a novel application to quantum Shannon theory.

18.
Chemphyschem ; 17(4): 471-3, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26891092

RESUMO

We observed single DNA molecules at different ethanol concentrations by using fluorescence microscopy. Large single DNA molecules undergo reentrant conformational transitions from elongated coil into folded globule and then into elongated coil state, accompanied by the increase of the concentration of ethanol in a low-salt aqueous environment. The second transition from globule into the coil state occurs at around 70 % (v/v) ethanol. From circular dichroism (CD) measurements, it is confirmed that the reentrant transition of the higher order structure proceeds together with the transitions of the secondary structure from B to C and, then, from C to A in a cooperative manner. The determined mechanism of the reentrant transition is discussed in relation to the unique characteristics of solutions with higher ethanol content, for which clathrate-like nanostructures of alcohol molecules are generated in the surrounding water.


Assuntos
DNA/química , Etanol/química , Solventes/química , Dicroísmo Circular , Microscopia de Fluorescência , Conformação de Ácido Nucleico
19.
Langmuir ; 32(15): 3794-802, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27023063

RESUMO

Liposomes encapsulating cytoskeletons have drawn much recent attention to develop an artificial cell-like chemical-machinery; however, as far as we know, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons because the sets of various regulatory factors, that is, their interacting proteins, are required to control the state of every reaction system of cytoskeletons. Here we focused on hydrostatic pressure to control the polymerization state of microtubules (MTs) within cell-sized giant liposomes (diameters ∼10 µm). MT is the cytoskeleton formed by the polymerization of tubulin, and cytoskeletal systems consisting of MTs are very dynamic and play many important roles in living cells, such as the morphogenesis of nerve cells and formation of the spindle apparatus during mitosis. Using real-time imaging with a high-pressure microscope, we examined the effects of hydrostatic pressure on the morphology of tubulin-encapsulating giant liposomes. At ambient pressure (0.1 MPa), many liposomes formed protrusions due to tubulin polymerization within them. When high pressure (60 MPa) was applied, the protrusions shrank within several tens of seconds. This process was repeatedly inducible (around three times), and after the pressure was released, the protrusions regenerated within several minutes. These deformation rates of the liposomes are close to the velocities of migrating or shape-changing living cells rather than the shortening and elongation rates of the single MTs, which have been previously measured. These results demonstrate that the elongation and shortening of protrusions of giant liposomes is repeatedly controllable by regulating the polymerization state of MTs within them by applying and releasing hydrostatic pressure.


Assuntos
Lipossomos/química , Tubulina (Proteína)/química , Animais , Pressão Hidrostática , Estrutura Quaternária de Proteína , Suínos
20.
Phys Rev Lett ; 115(22): 220502, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26650284

RESUMO

We introduce a simple protocol for verifiable measurement-only blind quantum computing. Alice, a client, can perform only single-qubit measurements, whereas Bob, a server, can generate and store entangled many-qubit states. Bob generates copies of a graph state, which is a universal resource state for measurement-based quantum computing, and sends Alice each qubit of them one by one. Alice adaptively measures each qubit according to her program. If Bob is honest, he generates the correct graph state, and, therefore, Alice can obtain the correct computation result. Regarding the security, whatever Bob does, Bob cannot get any information about Alice's computation because of the no-signaling principle. Furthermore, malicious Bob does not necessarily send the copies of the correct graph state, but Alice can check the correctness of Bob's state by directly verifying the stabilizers of some copies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA