Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nihon Shokakibyo Gakkai Zasshi ; 121(1): 55-62, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38220181

RESUMO

Gastric mixed neuroendocrine-non-neuroendocrine neoplasm (MiNEN) is an extremely rare form of gastric neoplasm, and its prognosis is often poor. This is a case report wherein the primary site increased during chemotherapy against gastric adenocarcinoma and was diagnosed with gastric MiNEN after total gastrectomy. A 71-year-old man was diagnosed with gastric adenocarcinoma complicated with liver and para-aortic lymph node metastasis. Chemotherapy with S-1, oxaliplatin, and trastuzumab was initiated. Although the size of metastatic lesions was reduced after six courses of treatment, a part of the primary site of gastric tumor rapidly. Pathological rebiopsy of the primary site suggested a neuroendocrine carcinoma, and he was finally diagnosed with gastric MiNEN after total gastrectomy. Thus, second-line chemotherapy was then initiated showing good response. We herein report a case of MiNEN with a rare diagnostic process.


Assuntos
Adenocarcinoma , Carcinoma Neuroendócrino , Tumores Neuroendócrinos , Neoplasias Gástricas , Masculino , Humanos , Idoso , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/patologia , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/diagnóstico , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/cirurgia , Carcinoma Neuroendócrino/terapia , Biópsia
2.
J Neurochem ; 165(3): 303-317, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36547371

RESUMO

Cells possess intrinsic features that are inheritable via epigenetic regulation, such as DNA methylation and histone modification. These inheritable features maintain a unique gene expression pattern, underlying cellular memory. Because of the degradation or displacement of mitotic chromosomes, most transcription factors do not contribute to cellular memory. However, accumulating in vitro evidence indicates that some transcription factors can be retained in mitotic chromosomes called as bookmarking. Such transcription factors may contribute to a novel third mechanism of cellular memory. Since most findings of transcription factor bookmarking have been reported in vitro, little is currently known in vivo. In the neural tube of mouse embryos, we discovered that OLIG2, a basic helix loop helix (bHLH) transcription factor that regulates proliferation of neural progenitors and the cell fate of motoneurons and oligodendrocytes, binds to chromatin through every cell cycle including M-phase. OLIG2 chromosomal localization coincides with mitotic cell features such as the phosphorylation of histone H3, KI67, and nuclear membrane breakdown. Chromosomal localization of OLIG2 is regulated by an N-terminus triple serine motif. Photobleaching analysis revealed slow OLIG2 mobility, suggesting a high affinity of OLIG2 to DNA. In Olig2 N-terminal deletion mutant mice, motoneurons and oligodendrocyte progenitor numbers are reduced in the neural tube, suggesting that the bookmarking regulatory domain is important for OLIG2 function. We conclude that OLIG2 is a de novo in vivo bookmarking transcription factor. Our results demonstrate the presence of in vivo bookmarking in a living organism and illustrate a novel function of transcription factors.


Assuntos
Epigênese Genética , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/genética , Tubo Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Oligodendroglia/metabolismo
3.
Semin Cell Dev Biol ; 97: 16-25, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30991117

RESUMO

Wound healing, tissue regeneration, and organ regrowth are all regeneration phenomena observed in vertebrates after an injury. However, the ability to regenerate differs greatly among species. Mammals can undergo wound healing and tissue regeneration, but cannot regenerate an organ; for example, they cannot regrow an amputated limb. In contrast, amphibians and fish have much higher capabilities for organ-level regeneration. In addition to medical studies and those in conventional mammalian models such as mice, studies in amphibians and fish have revealed essential factors for and mechanisms of regeneration, including the regrowth of a limb, tail, or fin. However, the molecular nature of the cellular memory needed to precisely generate a new appendage from an amputation site is not fully understood. Recent reports have indicated that organ regeneration is closely related to epigenetic regulation. For example, the methylation status of genomic DNA is related to the expression of regeneration-related genes, and histone-modification enzymes are required to control the chromatin dynamics for regeneration. A proposed mechanism of cellular memory involving an inheritable system of epigenetic modification led us to hypothesize that epigenetic regulation forms the basis for cellular memory in organ regeneration. Here we summarize the current understanding of the role of epigenetic regulation in organ regeneration and discuss the relationship between organ regeneration and epigenetic memory.


Assuntos
Cromatina/metabolismo , Epigênese Genética/genética , Extremidades/crescimento & desenvolvimento , Regeneração/efeitos dos fármacos , Vertebrados/metabolismo , Animais , Camundongos
4.
J Lipid Res ; 63(6): 100210, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35439525

RESUMO

Diverse molecular species of sulfatide with differences in FA lengths, unsaturation degrees, and hydroxylation statuses are expressed in the kidneys. However, the physiological functions of specific sulfatide species in the kidneys are unclear. Here, we evaluated the distribution of specific sulfatide species in the kidneys and their physiological functions. Electron microscopic analysis of kidneys of Cst-deficient mice lacking sulfatide showed vacuolar accumulation in the cytoplasm of intercalated cells in the collecting duct, whereas the proximal and distal tubules were unchanged. Immunohistochemical analysis revealed that vacuolar H+-ATPase-positive vesicles were accumulated in intercalated cells in sulfatide-deficient kidneys. Seventeen sulfatide species were detected in the murine kidney by iMScope MALDI-MS analysis. The distribution of the specific sulfatide species was classified into four patterns. Although most sulfatide species were highly expressed in the outer medullary layer, two unique sulfatide species of m/z 896.6 (predicted ceramide structure: t18:0-C22:0h) and m/z 924.6 (predicted ceramide structure: t18:0-C24:0h) were dispersed along the collecting duct, implying expression in intercalated cells. In addition, the intercalated cell-enriched fraction was purified by fluorescence-activated cell sorting using the anti-vacuolar H+-ATPase subunit 6V0A4, which predominantly contained sulfatide species (m/z 896.6 and 924.6). The Degs2 and Fa2h genes, which are responsible for ceramide hydroxylation, were expressed in the purified intercalated cells. These results suggested that sulfatide molecular species with ceramide composed of phytosphingosine (t18:0) and 2-hydroxy FAs, which were characteristically expressed in intercalated cells, were involved in the excretion of NH3 and protons into the urine.


Assuntos
Sulfoglicoesfingolipídeos , ATPases Vacuolares Próton-Translocadoras , Animais , Ceramidas , Rim/metabolismo , Camundongos , Esfingosina/análogos & derivados , ATPases Vacuolares Próton-Translocadoras/metabolismo
5.
Dev Biol ; 478: 155-162, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34256037

RESUMO

In vertebrate embryos, the kidney primordium metanephros is formed from two distinct cell lineages, Wolffian duct and metanephric mesenchyme, which were classically grouped as intermediate mesoderm. Whereas the reciprocal interactions between these two cell populations in kidney development have been studied extensively, the mechanisms generating them remain elusive. Here, we show that the mouse cell lineage that forms nephric mesenchyme develops as a subpopulation of Tbx6-expressing mesodermal precursor derivatives of neuro-mesodermal progenitors (NMPs) under the condition of bone morphogenetic protein (BMP)-signal-dependent Osr1 expression. The Osr1-expressing nephric mesenchyme precursors were confirmed as descendants of NMPs because they were labeled by Sox2 N1 enhancer-EGFP. In Tbx6 mutant embryos, nephric mesenchyme changed its fate into neural tissues, which reflected its NMP origin. In Osr1 mutant embryos, the specific region of the Tbx6-expressing mesoderm precursor, which normally expresses Osr1 and develops into the nephric mesenchyme, instead expressed the somite marker FoxC2. BMP signaling activated Osr1 expression in a region of TBX6-expressing mesoderm and elicited nephric mesenchyme development. This study suggested a new model of cell lineage segregation during gastrulation.


Assuntos
Gastrulação , Rim/embriologia , Mesoderma/embriologia , Células-Tronco/fisiologia , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem da Célula , Fatores de Transcrição Forkhead/metabolismo , Células-Tronco Mesenquimais/fisiologia , Mesoderma/citologia , Camundongos , Células-Tronco Neurais/fisiologia , Organogênese , Transdução de Sinais , Somitos/citologia , Somitos/fisiologia
6.
Development ; 146(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31235634

RESUMO

Bi-potential neuromesodermal progenitors (NMPs) produce both neural and paraxial mesodermal progenitors in the trunk and tail during vertebrate body elongation. We show that Sall4, a pluripotency-related transcription factor gene, has multiple roles in regulating NMPs and their descendants in post-gastrulation mouse embryos. Sall4 deletion using TCre caused body/tail truncation, reminiscent of early depletion of NMPs, suggesting a role of Sall4 in NMP maintenance. This phenotype became significant at the time of the trunk-to-tail transition, suggesting that Sall4 maintenance of NMPs enables tail formation. Sall4 mutants exhibit expanded neural and reduced mesodermal tissues, indicating a role of Sall4 in NMP differentiation balance. Mechanistically, we show that Sall4 promotion of WNT/ß-catenin signaling contributes to NMP maintenance and differentiation balance. RNA-Seq and SALL4 ChIP-Seq analyses support the notion that Sall4 regulates both mesodermal and neural development. Furthermore, in the mesodermal compartment, genes regulating presomitic mesoderm differentiation are downregulated in Sall4 mutants. In the neural compartment, we show that differentiation of NMPs towards post-mitotic neuron is accelerated in Sall4 mutants. Our results collectively provide evidence supporting the role of Sall4 in regulating NMPs and their descendants.


Assuntos
Padronização Corporal/genética , Linhagem da Célula/genética , Proteínas de Ligação a DNA/fisiologia , Mesoderma/citologia , Mesoderma/embriologia , Células-Tronco Neurais/citologia , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular/genética , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Mesoderma/metabolismo , Camundongos , Células-Tronco Neurais/fisiologia , Gravidez , Via de Sinalização Wnt/fisiologia
7.
Dev Growth Differ ; 64(9): 494-500, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36308507

RESUMO

Urodele amphibians have exceptional regeneration ability in various organs. Among these, the Iberian ribbed newt (Pleurodeles waltl) has emerged as a useful model organism for investigating the mechanisms underlying regeneration. Neural stem cells (NSCs) are an important source of regeneration in the central nervous system (CNS) and their culture method in vitro has been well established. NSCs form spherical cell aggregates called neurospheres and their formation has been demonstrated in various vertebrates, including some urodele species, but not in P. waltl. In this study, we reported neurosphere formation in brain- and spinal cord-derived cells of post-metamorphic P. waltl. These neurospheres showed proliferative activity and similar expression of marker proteins. However, the surface morphology was found to vary according to their origin, implying that the characteristics of the neurospheres generated from the brain and spinal cord could be similar but not identical. Subsequent in vitro differentiation analysis demonstrated that spinal cord-derived neurospheres gave rise to neurons and glial cells. We also found that cells in neurospheres from P. waltl differentiated to oligodendrocytes, whereas those from axolotls were reported not to differentiate to this cell type under standard culture conditions. Based on our findings, implantation of genetically modified neurospheres together with associated technical advantages in P. waltl could reveal pivotal gene(s) and/or signaling pathway(s) essential for the complete spinal cord regeneration ability in the future.


Assuntos
Células-Tronco Neurais , Pleurodeles , Animais , Pleurodeles/anatomia & histologia , Pleurodeles/metabolismo , Salamandridae , Medula Espinal , Neurônios
8.
Biochem Biophys Res Commun ; 534: 491-497, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220927

RESUMO

Cytoplasmic polyadenylation element binding protein 1 (CPEB1) regulates polyadenylation and subsequent translation of CPE-containing mRNAs involved in various physiological and pathological phenomena. Although the significance of CPEB1-mediated translational regulation has recently been reported, the detailed regulatory mechanism of Cpeb1 expression remains unclear. To elucidate the post-transcriptional regulatory mechanisms of Cpeb1 expression, we constructed reporter plasmids containing various deletions or mutations in the Cpeb1 mRNA 3' untranslated region (3'UTR). We investigated their expression levels in Neuro2a neuroblastoma cells. We found that Cpeb1 expression is regulated through an AU-rich element in its 3'UTR. Furthermore, the mRNA decay factor AU-rich binding factor 1 (AUF1) regulates Cpeb1 expression, and knockdown of AUF1 upregulates Cpeb1 mRNA expression but results in a decrease in CPEB1 protein levels. These findings indicate that AUF1 has a discordant role in the expression of Cpeb1.


Assuntos
Ribonucleoproteína Nuclear Heterogênea D0/genética , RNA Mensageiro/genética , Fatores de Transcrição/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Ribonucleoproteína Nuclear Heterogênea D0/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estabilidade de RNA
9.
Cell Tissue Res ; 386(3): 477-490, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34562148

RESUMO

Lamellar corpuscles function as mechanoreceptors in the skin, composed of axon terminals and lamellae constructed by terminal Schwann cells. They are classified into Pacinian, Meissner, and simple corpuscles based on histological criteria. Lamellar corpuscles in rat dermal papilla cells have been reported; however, the morphological aspects have yet to be thoroughly investigated. In the present study, we analyzed the enzyme activity, distribution, fine structure, and three-dimensional innervation of lamellar corpuscles in rat plantar skin. The lamellar corpuscles exhibiting non-specific cholinesterase were densely distributed in rat footpads, evident as notable skin elevations, especially at the apex, the highest portion of the ridges in each footpad. In contrast, only a few lamellar corpuscles were found in other plantar skin areas. Lamellar corpuscle was considered composed of a flat axon terminal Schwann cell lamellae, which were roughly concentrically arranged in the dermal papilla. These histological characteristics correspond to those of the simple corpuscle. Moreover, the axon tracing method revealed that one trunk axon innervated several simple corpuscles. The territory of the trunk axons overlapped with each other. Finally, the animals' footprints were analyzed. During the pausing and walking phases, footpads are often in contact with the floor. These results demonstrate that the type of lamellar corpuscles in the dermal papillae of rat plantar skin is a simple corpuscle and implies that their distribution pattern in the plantar skin is convenient for efficient sensing and transmission of mechanical stimuli from the ground.


Assuntos
Pé/fisiologia , Células Receptoras Sensoriais/fisiologia , Pele/anatomia & histologia , Pele/inervação , Animais , Ratos , Ratos Wistar
10.
Int Immunol ; 31(2): 69-79, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30299470

RESUMO

Kit/CD117 plays a crucial role in the cell-cell and cell-matrix adhesion of mammalian mast cells (MCs); however, it is unclear whether other adhesion molecule(s) perform important roles in the adhesion of MCs. In the present study, we show a novel Kit-independent adhesion mechanism of mouse cultured MCs mediated by Notch family members. On stromal cells transduced with each Notch ligand gene, Kit and its signaling become dispensable for the entire adhesion process of MCs from tethering to spreading. The Notch-mediated spreading of adherent MCs involves the activation of signaling via phosphatidylinositol 3-kinases and mitogen-activated protein kinases, similar to Kit-mediated spreading. Despite the activation of the same signaling pathways, while Kit supports the adhesion and survival of MCs, Notch only supports adhesion. Thus, Notch family members are specialized adhesion molecules for MCs that effectively replace the adhesion function of Kit in order to support the interaction of MCs with the surrounding cellular microenvironments.


Assuntos
Mastócitos/imunologia , Proteínas Proto-Oncogênicas c-kit/imunologia , Receptores Notch/imunologia , Animais , Adesão Celular/imunologia , Células Cultivadas , Mastócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL
11.
J Biol Chem ; 293(31): 12167-12176, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29895619

RESUMO

Somites are a pair of epithelial spheres beside a neural tube and are formed with an accurate periodicity during embryogenesis in vertebrates. It has been known that Hes7 is one of the core clock genes for somitogenesis, and its expression domain is restricted in the presomitic mesoderm (PSM). However, the molecular mechanism of how Hes7 transcription is regulated is not clear. Here, using transgenic mice and luciferase-based reporter assays and in vitro binding assays, we unravel the mechanism by which Hes7 is expressed exclusively in the PSM. We identified a Hes7 essential region residing -1.5 to -1.1 kb from the transcription start site of mouse Hes7, and this region was indispensable for PSM-specific Hes7 expression. We also present detailed analyses of cis-regulatory elements within the Hes7 essential region that directs Hes7 expression in the PSM. Hes7 expression in the PSM was up-regulated through the E-box, T-box, and RBPj-binding element in the Hes7 essential region, presumably through synergistic signaling involving mesogenin1, T-box6 (Tbx6), and Notch. Furthermore, we demonstrate that Tbx18, Ripply2, and Hes7 repress the activation of the Hes7 essential region by the aforementioned transcription factors. Our findings reveal that a unified transcriptional regulatory network involving a Hes7 essential region confers robust PSM-specific Hes7 gene expression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Mesoderma/metabolismo , Receptor Notch1/metabolismo , Somitos/metabolismo , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Elementos E-Box , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/química , Mesoderma/embriologia , Camundongos , Receptor Notch1/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Somitos/embriologia , Proteínas com Domínio T/genética , Fatores de Transcrição/genética
12.
PLoS Genet ; 12(6): e1006138, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27352137

RESUMO

Gli3 is a major regulator of Hedgehog signaling during limb development. In the anterior mesenchyme, GLI3 is proteolytically processed into GLI3R, a truncated repressor form that inhibits Hedgehog signaling. Although numerous studies have identified mechanisms that regulate Gli3 function in vitro, it is not completely understood how Gli3 function is regulated in vivo. In this study, we show a novel mechanism of regulation of GLI3R activities in limb buds by Gata6, a member of the GATA transcription factor family. We show that conditional inactivation of Gata6 prior to limb outgrowth by the Tcre deleter causes preaxial polydactyly, the formation of an anterior extra digit, in hindlimbs. A recent study suggested that Gata6 represses Shh transcription in hindlimb buds. However, we found that ectopic Hedgehog signaling precedes ectopic Shh expression. In conjunction, we observed Gata6 and Gli3 genetically interact, and compound heterozygous mutants develop preaxial polydactyly without ectopic Shh expression, indicating an additional prior mechanism to prevent polydactyly. These results support the idea that Gata6 possesses dual roles during limb development: enhancement of Gli3 repressor function to repress Hedgehog signaling in the anterior limb bud, and negative regulation of Shh expression. Our in vitro and in vivo studies identified that GATA6 physically interacts with GLI3R to facilitate nuclear localization of GLI3R and repressor activities of GLI3R. Both the genetic and biochemical data elucidates a novel mechanism by Gata6 to regulate GLI3R activities in the anterior limb progenitor cells to prevent polydactyly and attain proper development of the mammalian autopod.


Assuntos
Extremidades/crescimento & desenvolvimento , Fator de Transcrição GATA6/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Fatores de Transcrição Kruppel-Like/genética , Proteínas do Tecido Nervoso/genética , Organogênese/genética , Células-Tronco/metabolismo , Animais , Padronização Corporal/genética , Linhagem Celular , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Botões de Extremidades/crescimento & desenvolvimento , Botões de Extremidades/metabolismo , Camundongos , Células NIH 3T3 , Polidactilia/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Proteína Gli3 com Dedos de Zinco
13.
Gan To Kagaku Ryoho ; 46(9): 1405-1411, 2019 Sep.
Artigo em Japonês | MEDLINE | ID: mdl-31530780

RESUMO

Abemaciclib, a selective cyclin dependent kinases 4 and 6(CDK4 & 6)inhibitor, is under development for the treatment of hormone receptor(HR)-positive, HER2-negative breast cancer. CDK4 & 6 inhibitors attenuate Rb phosphorylation resulting in a G1 arrest and tumor growth inhibition. Abemaciclib potently inhibits both CDK4 and CDK6, with 14-fold higher potency for CDK4-cyclin D1 complexes than CDK6-cyclin D3 in enzymatic assays. Low frequency of severe neutropenia requiring drug holiday in clinical trials of abemaciclib in breast cancer patients enables continuous daily dosing. Abemaciclib's preclinical difference in selectivity for CDK4 vs CDK6 could help explain its safety profile and ability to be dosed on a continuous schedule. Continuous inhibition of CDK4 & 6 by abemaciclib results in irreversible growth inhibition through induction of senescence and apoptosis in breast cancer cell lines. Abemaciclib shows its growth inhibitory effect particularly in estrogen receptor(ER)- positive breast cancer, and sensitivity to abemaciclib is associated with high ER levels and Rb positivity. In animals bearing ERpositive breast cancer, significant tumor growth inhibition was shown by single-agent and combination with anti-estrogen agents. Abemaciclib penetrates the blood-brain barrier and showed antitumor activity in glioma models. As described above, there are some characteristics demonstrate differences of abemaciclib and other CDK4 & 6 inhibitors. In clinical studies, abemaciclib has demonstrated efficacy and generally tolerable safety profile in HR-positive, HER2-negative breast cancer patients.


Assuntos
Aminopiridinas/uso terapêutico , Benzimidazóis/uso terapêutico , Neoplasias da Mama , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Neoplasias da Mama/tratamento farmacológico , Quinase 4 Dependente de Ciclina , Humanos
14.
Thorax ; 73(1): 85-87, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28360222

RESUMO

This is a prospective clinical study aimed at introducing a method to visualise the location of an air leak and to identify the bulla responsible on three-dimensional (3-D) cine CT. In 10 patients with spontaneous pneumothorax, dynamic 320-detector row CT was performed with injection of 0.9% saline into the affected pleural cavity via a preplaced chest tube. In eight cases, 3-D cine CT thoracography revealed the location of the air leak and the bulla responsible (7 cases: air stream sign; 1 case: repeated collapse and expansion of a bulla with the patient's breathing).


Assuntos
Tomografia Computadorizada Quadridimensional , Pneumotórax/diagnóstico por imagem , Pneumotórax/etiologia , Tomografia Computadorizada por Raios X , Adolescente , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
15.
Dev Biol ; 406(2): 271-82, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26282893

RESUMO

Many amphibians can regenerate limbs, even in adulthood. If a limb is amputated, the stump generates a blastema that makes a complete, new limb in a process similar to developmental morphogenesis. The blastema is thought to inherit its limb-patterning properties from cells in the stump, and it retains the information despite changes in morphology, gene expression, and differentiation states required by limb regeneration. We hypothesized that these cellular properties are maintained as epigenetic memory through histone modifications. To test this hypothesis, we analyzed genome-wide histone modifications in Xenopus limb bud regeneration. The trimethylation of histone H3 at lysine 4 (H3K4me3) is closely related to an open chromatin structure that allows transcription factors access to genes, whereas the trimethylation of histone H3 at lysine 27 (H3K27me3) is related to a closed chromatin state that blocks the access of transcription factors. We compared these two modification profiles by high-throughput sequencing of samples prepared from the intact limb bud and the regenerative blastema by chromatin immunoprecipitation. For many developmental genes, histone modifications at the transcription start site were the same in the limb bud and the blastema, were stable during regeneration, and corresponded well to limb properties. These results support our hypothesis that histone modifications function as a heritable cellular memory to maintain limb cell properties, despite dynamic changes in gene expression during limb bud regeneration in Xenopus.


Assuntos
Epigênese Genética/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Código das Histonas/fisiologia , Botões de Extremidades/fisiologia , Regeneração/fisiologia , Xenopus/fisiologia , Adenosina/análogos & derivados , Animais , Animais Geneticamente Modificados , Sequência de Bases , Imunoprecipitação da Cromatina , Metilação de DNA/genética , Primers do DNA/genética , Imunofluorescência , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/metabolismo , Hibridização In Situ , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
16.
Pathol Int ; 66(11): 622-628, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27687701

RESUMO

Tsumura Suzuki obese diabetes (TSOD) mice spontaneously develop obesity and type 2 diabetes with aberrant accumulation of excessive iron in the spleen. Aberrantly accumulated iron may cause oxidative stress and result in various symptoms of metabolic syndrome in the mice. We investigated iron metabolism and oxidative stress in TSOD mice. Male TSOD and control mice were killed at 2, 3, 6, and 8 months of age, and blood and tissue samples were collected. The serum levels of ferritin and oxidized low-density lipoprotein (OxLDL) were measured. Total glutathione concentrations of liver and spleen were also measured. Serum ferritin and OxLDL were higher in TSOD mice than in control mice at 2 and 6 months. In addition, the glutathione concentrations in TSOD mice were lower in the liver and higher in the spleen at 3 and 6 months than those in control mice. These results suggest that abnormal iron metabolism and imbalanced oxidative stress occurs in young and old TSOD mice. We propose herein that TSOD mice might be a unique and valuable model for investigating the role of iron metabolism in pathogenesis of metabolic syndrome.


Assuntos
Modelos Animais de Doenças , Ferro/metabolismo , Síndrome Metabólica/fisiopatologia , Animais , Progressão da Doença , Ferritinas/sangue , Masculino , Camundongos , Camundongos Obesos , Obesidade , Estresse Oxidativo
17.
Dev Biol ; 388(1): 57-67, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24491818

RESUMO

The Hippo signaling pathway is conserved from insects to mammals and is important for multiple processes, including cell proliferation, apoptosis and tissue homeostasis. Hippo signaling is also crucial for regeneration, including intercalary regeneration, of the whole body in the flatworm and of the leg in the cricket. However, its role in vertebrate epimorphic regeneration is unknown. Therefore, to identify principles of regeneration that are conserved among bilaterians, we investigated the role of Hippo signaling in the limb bud regeneration of an anuran amphibian, Xenopus laevis. We found that a transcription factor, Yap1, an important downstream effector of Hippo signaling, is upregulated in the regenerating limb bud. To evaluate Yap1׳s function in limb bud regeneration, we made transgenic animals that expressed a dominant-negative form of Yap under a heat-shock promoter. Overexpression of a dominant-negative form of Yap in tadpoles reduced cell proliferation, induced ectopic apoptosis, perturbed the expression domains of limb-patterning genes including hoxa13, hoxa11, and shh in the regenerating limb bud. Transient expression of a dominant-negative Yap in transgenic tadpoles also caused limb bud regeneration defects, and reduced intercalary regeneration. These results indicate that Yap1 has a crucial role in controlling the limb regenerative capacity in Xenopus, and suggest that the involvement of Hippo signaling in regeneration is conserved between vertebrates and invertebrates. This finding provides molecular evidence that common principles underlie regeneration across phyla, and may contribute to the development of new therapies in regenerative medicine.


Assuntos
Botões de Extremidades/fisiologia , Regeneração , Transativadores/genética , Transativadores/fisiologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/fisiologia , Xenopus laevis/embriologia , Animais , Animais Geneticamente Modificados , Apoptose , Padronização Corporal , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Genes Dominantes , Imuno-Histoquímica , Hibridização In Situ , Botões de Extremidades/embriologia , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transgenes , Proteínas de Sinalização YAP
18.
Dev Biol ; 396(1): 31-41, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25284091

RESUMO

The size and shape of tissues are tightly controlled by synchronized processes among cells and tissues to produce an integrated organ. The Hippo signaling pathway controls both cell proliferation and apoptosis by dual signal-transduction states regulated through a repressive kinase cascade. Yap1 and Tead, transcriptional regulators that act downstream of the Hippo signaling kinase cascade, have essential roles in regulating cell proliferation. In amphibian limb or tail regeneration, the local tissue outgrowth terminates when the correct size is reached, suggesting that organ size is strictly controlled during epimorphic organ-level regeneration. We recently demonstrated that Yap1 is required for the regeneration of Xenopus tadpole limb buds (Hayashi et al., 2014, Dev. Biol. 388, 57-67), but the molecular link between the Hippo pathway and organ size control in vertebrate epimorphic regeneration is not fully understood. To examine the requirement of Hippo pathway transcriptional regulators in epimorphic regeneration, including organ size control, we inhibited these regulators during Xenopus tadpole tail regeneration by overexpressing a dominant-negative form of Yap (dnYap) or Tead4 (dnTead4) under a heat-shock promoter in transgenic animal lines. Each inhibition resulted in regeneration defects accompanied by reduced cell mitosis and increased apoptosis. Single-cell gene manipulation experiments indicated that Tead4 cell-autonomously regulates the survival of neural progenitor cells in the regenerating tail. In amphibians, amputation at the proximal level of the tail (deep amputation) results in faster regeneration than that at the distal level (shallow amputation), to restore the original-sized tail with similar timing. However, dnTead4 overexpression abolished the position-dependent differential growth rate of tail regeneration. These results suggest that the transcriptional regulators in the Hippo pathway, Tead4 and Yap1, are required for general vertebrate epimorphic regeneration as well as for organ size control in appendage regeneration. In regenerative medicine, these findings should contribute to the development of three-dimensional organs with the correct size for a patient's body.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regeneração , Cauda/embriologia , Transativadores/fisiologia , Proteínas de Xenopus/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Fluorescência Verde/metabolismo , Temperatura Alta , Neurônios/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Medula Espinal/fisiologia , Células-Tronco/citologia , Transcrição Gênica , Xenopus laevis , Proteínas de Sinalização YAP
19.
Dev Growth Differ ; 57(4): 341-51, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25867864

RESUMO

Animals have an intrinsic regeneration ability for injured tissues and organs. Species that have high regeneration ability such as newts can regenerate an organ with exactly the same size and shape as those of the original one. It has been unclear how a regenerating organ grows and ceases growth at an appropriate size. Organ size control in regeneration is seen in various organs of various species that have high regeneration ability. In animal species that do not have sufficient regeneration ability, a wound heals (the injury is closed, but lost parts are not regenerated), but an organ cannot be restored to its original size. On the other hand, perturbation of regeneration sometimes results in oversized or extra structures. In this sense, organ size control plays essential roles in proper regeneration. In this article, we introduce the concept of size control in organ regeneration regulated by the Hippo signaling pathway. We focused on the transcriptional regulator Yap, which shuttles between the nuclei and cytoplasm to exert a regulatory function in a context-dependent manner. The Yap-mediated Hippo pathway is thought to sense cell density, extracellular matrix (ECM) contact and cell position and to regulate gene expression for control of organ size. This mechanism can reasonably explain size control of organ regeneration.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Regeneração , Transdução de Sinais , Animais , Humanos
20.
Dev Growth Differ ; 57(9): 601-13, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26510480

RESUMO

Urodele amphibians (newts and salamanders) and anuran amphibians (frogs) are excellent research models to reveal mechanisms of three-dimensional organ regeneration since they have exceptionally high regenerative capacity among tetrapods. However, the difficulty in manipulating gene expression in cells in a spatially restricted manner has so far hindered elucidation of the molecular mechanisms of organ regeneration in amphibians. Recently, local heat shock by laser irradiation has enabled local gene induction even at the single-cell level in teleost fishes, nematodes, fruit flies and plants. In this study, local heat shock was made with infrared laser irradiation (IR-LEGO) by using a gene expression inducible system in transgenic animals containing a heat shock promoter, and gene expression was successfully induced only in the target region of two amphibian species, Xenopus laevis and Pleurodeles waltl (a newt), at postembryonic stages. Furthermore, we induced spatially restricted but wider gene expression in Xenopus laevis tadpoles and froglets by applying local heat shock by a temperature-controlled metal probe (temperature stimulator). The local gene manipulation systems, the IR-LEGO and the temperature stimulator, enable us to do a rigorous cell lineage trace with the combination of the Cre-LoxP system as well as to analyze gene function in a target region or cells with less off-target effects in the study of amphibian regeneration.


Assuntos
Anfíbios/fisiologia , Regulação da Expressão Gênica , Regeneração , Temperatura , Anfíbios/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA