Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11886, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789534

RESUMO

The E3 ubiquitin-ligase UHRF1 is an epigenetic regulator coordinating DNA methylation and histone modifications. However, little is known about how it regulates adipogenesis or metabolism. In this study, we discovered that UHRF1 is a key regulatory factor for adipogenesis, and we identified the altered molecular pathways that UHRF1 targets. Using CRISPR/Cas9-based knockout strategies, we discovered the whole transcriptomic changes upon UHRF1 deletion. Bioinformatics analyses revealed that key adipogenesis regulators such PPAR-γ and C/EBP-α were suppressed, whereas TGF-ß signaling and fibrosis markers were upregulated in UHRF1-depleted differentiating adipocytes. Furthermore, UHRF1-depleted cells showed upregulated expression and secretion of TGF-ß1, as well as the glycoprotein GPNMB. Treating differentiating preadipocytes with recombinant GPNMB led to an increase in TGF-ß protein and secretion levels, which was accompanied by an increase in secretion of fibrosis markers such as MMP13 and a reduction in adipogenic conversion potential. Conversely, UHRF1 overexpression studies in human cells demonstrated downregulated levels of GPNMB and TGF-ß, and enhanced adipogenic potential. In conclusion, our data show that UHRF1 positively regulates 3T3-L1 adipogenesis and limits fibrosis by suppressing GPNMB and TGF-ß signaling cascade, highlighting the potential relevance of UHRF1 and its targets to the clinical management of obesity and linked metabolic disorders.


Assuntos
Adipogenia , Glicoproteínas de Membrana , Transdução de Sinais , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Células 3T3-L1 , Adipócitos/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Diferenciação Celular , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Fibrose , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
2.
Vet Sci ; 11(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39057983

RESUMO

Septic arthritis (SA) in horses has long-term health implications. The success of its resolution hinges on the implementation of early, aggressive treatment, which is often sustained over a prolonged period. Common diagnostic methods do not allow for the reliable detection of the eradication of joint infection. A potential alternative is the discovery and characterization of mRNA biomarkers. The purpose of this study was to identify potential mRNA biomarkers for the eradication of joint infection in equine SA and to compare their expression with our previously published proteomics data. In addition, the transcriptomics data were compared to the mRNA biomarker panel, SeptiCyte Lab, used to distinguish sepsis from non-septic shock in humans. A comparative transcriptomics analysis of synovial fluid from the SA joints of five horses with active infection and subsequent post-treatment eradicated infection in the same joints and five horses with non-septic synovitis was performed. Eight novel mRNA transcripts were identified that were significantly upregulated (>3-fold) in horses with active SA compared to horses post-eradication of infection after treatment and horses with non-septic synovitis. Two proteins in our proteomics data corresponded to these mRNA transcripts, but were not statistically different. The transcripts used in the SeptiCyte test were not differentially expressed in our study. Our results suggest that mRNA may be a useful source of biomarkers for the eradication of joint infection in horses and warrants further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA