Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 668
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 621(7980): 716-722, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37758891

RESUMO

Einstein's general theory of relativity from 19151 remains the most successful description of gravitation. From the 1919 solar eclipse2 to the observation of gravitational waves3, the theory has passed many crucial experimental tests. However, the evolving concepts of dark matter and dark energy illustrate that there is much to be learned about the gravitating content of the universe. Singularities in the general theory of relativity and the lack of a quantum theory of gravity suggest that our picture is incomplete. It is thus prudent to explore gravity in exotic physical systems. Antimatter was unknown to Einstein in 1915. Dirac's theory4 appeared in 1928; the positron was observed5 in 1932. There has since been much speculation about gravity and antimatter. The theoretical consensus is that any laboratory mass must be attracted6 by the Earth, although some authors have considered the cosmological consequences if antimatter should be repelled by matter7-10. In the general theory of relativity, the weak equivalence principle (WEP) requires that all masses react identically to gravity, independent of their internal structure. Here we show that antihydrogen atoms, released from magnetic confinement in the ALPHA-g apparatus, behave in a way consistent with gravitational attraction to the Earth. Repulsive 'antigravity' is ruled out in this case. This experiment paves the way for precision studies of the magnitude of the gravitational acceleration between anti-atoms and the Earth to test the WEP.

2.
Nature ; 592(7852): 35-42, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33790445

RESUMO

The photon-the quantum excitation of the electromagnetic field-is massless but carries momentum. A photon can therefore exert a force on an object upon collision1. Slowing the translational motion of atoms and ions by application of such a force2,3, known as laser cooling, was first demonstrated 40 years ago4,5. It revolutionized atomic physics over the following decades6-8, and it is now a workhorse in many fields, including studies on quantum degenerate gases, quantum information, atomic clocks and tests of fundamental physics. However, this technique has not yet been applied to antimatter. Here we demonstrate laser cooling of antihydrogen9, the antimatter atom consisting of an antiproton and a positron. By exciting the 1S-2P transition in antihydrogen with pulsed, narrow-linewidth, Lyman-α laser radiation10,11, we Doppler-cool a sample of magnetically trapped antihydrogen. Although we apply laser cooling in only one dimension, the trap couples the longitudinal and transverse motions of the anti-atoms, leading to cooling in all three dimensions. We observe a reduction in the median transverse energy by more than an order of magnitude-with a substantial fraction of the anti-atoms attaining submicroelectronvolt transverse kinetic energies. We also report the observation of the laser-driven 1S-2S transition in samples of laser-cooled antihydrogen atoms. The observed spectral line is approximately four times narrower than that obtained without laser cooling. The demonstration of laser cooling and its immediate application has far-reaching implications for antimatter studies. A more localized, denser and colder sample of antihydrogen will drastically improve spectroscopic11-13 and gravitational14 studies of antihydrogen in ongoing experiments. Furthermore, the demonstrated ability to manipulate the motion of antimatter atoms by laser light will potentially provide ground-breaking opportunities for future experiments, such as anti-atomic fountains, anti-atom interferometry and the creation of antimatter molecules.

3.
Nature ; 578(7795): 403-408, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31940659

RESUMO

Glycans have diverse physiological functions, ranging from energy storage and structural integrity to cell signalling and the regulation of intracellular processes1. Although biomass-derived carbohydrates (such as D-glucose, D-xylose and D-galactose) are extracted on commercial scales, and serve as renewable chemical feedstocks and building blocks2,3, there are hundreds of distinct monosaccharides that typically cannot be isolated from their natural sources and must instead be prepared through multistep chemical or enzymatic syntheses4,5. These 'rare' sugars feature prominently in bioactive natural products and pharmaceuticals, including antiviral, antibacterial, anticancer and cardiac drugs6,7. Here we report the preparation of rare sugar isomers directly from biomass carbohydrates through site-selective epimerization reactions. Mechanistic studies establish that these reactions proceed under kinetic control, through sequential steps of hydrogen-atom abstraction and hydrogen-atom donation mediated by two distinct catalysts. This synthetic strategy provides concise and potentially extensive access to this valuable class of natural compounds.


Assuntos
Técnicas de Química Sintética , Açúcares/química , Açúcares/síntese química , Biomassa , Catálise , Hidrogênio/química , Isomerismo , Cinética , Metilglucosídeos/síntese química , Metilglucosídeos/química , Polissacarídeos/síntese química , Polissacarídeos/química
4.
Nature ; 557(7703): 71-75, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29618820

RESUMO

In 1928, Dirac published an equation 1 that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles-antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron 2 (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter3-7, including tests of fundamental symmetries such as charge-parity and charge-parity-time, and searches for evidence of primordial antimatter, such as antihelium nuclei, have high priority in contemporary physics research. The fundamental role of the hydrogen atom in the evolution of the Universe and in the historical development of our understanding of quantum physics makes its antimatter counterpart-the antihydrogen atom-of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S-2S transition was recently observed 8 in antihydrogen. Here we characterize one of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees with that in hydrogen to about 5 kilohertz out of 2.5 × 1015 hertz. This is consistent with charge-parity-time invariance at a relative precision of 2 × 10-12-two orders of magnitude more precise than the previous determination 8 -corresponding to an absolute energy sensitivity of 2 × 10-20 GeV.

5.
Nature ; 561(7722): 211-215, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30135588

RESUMO

In 1906, Theodore Lyman discovered his eponymous series of transitions in the extreme-ultraviolet region of the atomic hydrogen spectrum1,2. The patterns in the hydrogen spectrum helped to establish the emerging theory of quantum mechanics, which we now know governs the world at the atomic scale. Since then, studies involving the Lyman-α line-the 1S-2P transition at a wavelength of 121.6 nanometres-have played an important part in physics and astronomy, as one of the most fundamental atomic transitions in the Universe. For example, this transition has long been used by astronomers studying the intergalactic medium and testing cosmological models via the so-called 'Lyman-α forest'3 of absorption lines at different redshifts. Here we report the observation of the Lyman-α transition in the antihydrogen atom, the antimatter counterpart of hydrogen. Using narrow-line-width, nanosecond-pulsed laser radiation, the 1S-2P transition was excited in magnetically trapped antihydrogen. The transition frequency at a field of 1.033 tesla was determined to be 2,466,051.7 ± 0.12 gigahertz (1σ uncertainty) and agrees with the prediction for hydrogen to a precision of 5 × 10-8. Comparisons of the properties of antihydrogen with those of its well-studied matter equivalent allow precision tests of fundamental symmetries between matter and antimatter. Alongside the ground-state hyperfine4,5 and 1S-2S transitions6,7 recently observed in antihydrogen, the Lyman-α transition will permit laser cooling of antihydrogen8,9, thus providing a cold and dense sample of anti-atoms for precision spectroscopy and gravity measurements10. In addition to the observation of this fundamental transition, this work represents both a decisive technological step towards laser cooling of antihydrogen, and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum.

7.
Nature ; 541(7638): 506-510, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28005057

RESUMO

The spectrum of the hydrogen atom has played a central part in fundamental physics over the past 200 years. Historical examples of its importance include the wavelength measurements of absorption lines in the solar spectrum by Fraunhofer, the identification of transition lines by Balmer, Lyman and others, the empirical description of allowed wavelengths by Rydberg, the quantum model of Bohr, the capability of quantum electrodynamics to precisely predict transition frequencies, and modern measurements of the 1S-2S transition by Hänsch to a precision of a few parts in 1015. Recent technological advances have allowed us to focus on antihydrogen-the antimatter equivalent of hydrogen. The Standard Model predicts that there should have been equal amounts of matter and antimatter in the primordial Universe after the Big Bang, but today's Universe is observed to consist almost entirely of ordinary matter. This motivates the study of antimatter, to see if there is a small asymmetry in the laws of physics that govern the two types of matter. In particular, the CPT (charge conjugation, parity reversal and time reversal) theorem, a cornerstone of the Standard Model, requires that hydrogen and antihydrogen have the same spectrum. Here we report the observation of the 1S-2S transition in magnetically trapped atoms of antihydrogen. We determine that the frequency of the transition, which is driven by two photons from a laser at 243 nanometres, is consistent with that expected for hydrogen in the same environment. This laser excitation of a quantum state of an atom of antimatter represents the most precise measurement performed on an anti-atom. Our result is consistent with CPT invariance at a relative precision of about 2 × 10-10.

8.
Nature ; 548(7665): 66-69, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28770838

RESUMO

The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 1013 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger's relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen-the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 104. This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.

9.
J Dairy Sci ; 106(6): 3884-3899, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37105877

RESUMO

Our objective was to determine the effect of addition of dipotassium phosphate (DKP) at 3 different thermal treatments on color, viscosity, and sensory properties of 7.5% milk protein-based beverages during 15 d of storage at 4°C. Micellar casein concentrate (MCC) and milk protein concentrate (MPC) containing about 7.5% protein were produced from pasteurized skim milk using a 3×, 3-stage ceramic microfiltration process and a 3×, 3-stage polymeric ultrafiltration membrane process, respectively. The MCC and MPC were each split into 6 batches, based on thermal process and addition of DKP. The 6 batches were no postfiltration heat treatment with added DKP (0.15%), no postfiltration heat without added DKP (0%), postfiltration high-temperature, short time (HTST) with DKP, postfiltration HTST without DKP, postfiltration direct steam injection with DKP, and postfiltration direct steam injection without DKP. The 6 MCC milk-based beverages and the 6 MPC milk-based beverages were stored at 4°C. Viscosity, color, and sensory properties were determined over 15 d of refrigerated storage. MCC- and MPC-based beverages at 7.5% protein with and without 0.15% added dipotassium phosphate were successfully run through an HTST and direct steam injection thermal process. The 7.5% protein MCC-based beverage contained a higher calcium and phosphorus content (2,425 and 1,583 mg/L, respectively) than the 7.5% protein MPC-based beverages (2,141 and 1,338 mg/L, respectively). Pasteurization (HTST) had very little effect on beverage particle size distribution, whereas direct steam injection thermal processing produced protein aggregates with medians in the range of 10 and 175 µm for MPC beverages. A population of casein micelles at about 0.15 µm was found in both MCC- and MPC-based beverages. Larger particles in the 175-µm range were not detected in the MCC beverages. In general, the apparent viscosity (AV) of MCC beverages was higher than MPC beverages. Added DKP increased the AV of both MCC- and MPC-based beverages, while increasing heat treatment decreased AV. The AV of beverages with DKP increased during 15 d of 4°C of storage for both MCC and MPC, whereas there was very little change in AV during storage without DKP and a similar effect was observed for sensory viscosity scores. The L value of beverages was higher with higher heat treatment, but DKP addition decreased L value and sensory opacity greatly. Sulfur-eggy flavors were detected in MPC beverages, but not MCC-based beverages.


Assuntos
Caseínas , Proteínas do Leite , Animais , Proteínas do Leite/análise , Viscosidade , Temperatura Alta , Vapor , Micelas , Fosfatos , Bebidas/análise , Manipulação de Alimentos
10.
Ir Med J ; 116(No.1): 10, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36916759

RESUMO

The virtual fracture clinic (VFC) enables the safe, cost-effective delivery of high-quality patient-centred fracture care, whilst reducing hospital footfall. Within our institution, an Outreach VFC was launched, accepting a pre-defined range of trauma referrals from the outreach centre's emergency department (ED). The initial nine months' worth of cases referred to the Outreach VFC were assessed. The injury pattern, time to review, treatment plan and discharge destination of each referred patient were examined. A total of 822 patients were referred to the Outreach VFC during its initial nine months in operation. Owing to COVID-19-related alterations in the patient pathway, 58.1% of patients were referred on to fracture clinic/ED, with 34.4% of patients being referred for physiotherapy input. 44.9% of patients were reviewed at the Outreach VFC within 72 hours of ED presentation, with 88.6% of patients reviewed within 7 days. The Outreach VFC pilot initiative saved the Dublin Midlands Hospitals Group approximately €83,022 over nine months. The Outreach VFC model represents a novel approach to trauma care delivery with advantages for patient and hospital alike. Rural communities serve to benefit from its future implementation and the remote management of orthopaedic trauma. The Outreach VFC model provides a means of delivering safe and timely orthopaedic care whilst maintaining high levels of patient satisfaction.


Assuntos
COVID-19 , Fraturas Ósseas , Humanos , Fraturas Ósseas/terapia , Instituições de Assistência Ambulatorial , Satisfação do Paciente , Encaminhamento e Consulta
11.
J Am Chem Soc ; 144(26): 11870-11877, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731921

RESUMO

Radical-mediated transformations have emerged as powerful methods for the synthesis of rare and unnatural branched, deoxygenated, and isomeric sugars. Here, we describe a radical-mediated axial-to-equatorial alcohol epimerization method to transform abundant glycans into rare isomers. The method delivers highly predictable and selective reaction outcomes that are complementary to other sugar isomerization methods. The synthetic utility of isomer interconversion is showcased through expedient glycan synthesis, including one-step glycodiversification. Mechanistic studies reveal that both site- and diastereoselectivities are achieved by highly selective H atom abstraction of equatorially disposed α-hydroxy C-H bonds.


Assuntos
Carboidratos , Açúcares , Carboidratos/química , Hexoses , Isomerismo , Polissacarídeos/química , Açúcares/química
12.
Nature ; 529(7586): 373-6, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26791725

RESUMO

Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of |Q| < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known to be no greater than about 10(-21)e for a diverse range of species including H2, He and SF6. Charge-parity-time symmetry and quantum anomaly cancellation demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge, then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement.

13.
J Am Chem Soc ; 143(34): 13798-13805, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34406756

RESUMO

The selective manipulation of carbohydrate scaffolds is challenging due to the presence of multiple, nearly chemically indistinguishable O-H and C-H bonds. As a result, protecting-group-based synthetic strategies are typically necessary for carbohydrate modification. Here we report a concise semisynthetic strategy to access diverse 2- and 4-deoxygenated carbohydrates without relying on the exhaustive use of protecting groups to achieve site-selective reaction outcomes. Our approach leverages a Mn2+-promoted redox isomerization step, which proceeds via sugar radical intermediates accessed by neutral hydrogen atom abstraction under visible light-mediated photoredox conditions. The resulting deoxyketopyranosides feature chemically distinguishable functional groups and are readily transformed into diverse carbohydrate structures. To showcase the versatility of this method, we report expedient syntheses of the rare sugars l-ristosamine, l-olivose, l-mycarose, and l-digitoxose from commercial l-rhamnose. The findings presented here validate the potential for radical intermediates to facilitate the selective transformation of carbohydrates and showcase the step and efficiency advantages attendant to synthetic strategies that minimize a reliance upon protecting groups.

14.
Am J Physiol Renal Physiol ; 320(3): F505-F517, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522410

RESUMO

Recent evidence suggests that dipeptidyl peptidase-4 (DPP4) inhibition with saxagliptin (Saxa) is renoprotective under comorbid conditions associated with activation of the renin-angiotensin-aldosterone system (RAAS), such as diabetes, obesity, and hypertension, which confer a high cardiovascular risk. Immune system activation is now recognized as a contributor to RAAS-mediated tissue injury, and, importantly, immunomodulatory effects of DPP4 have been reported. Accordingly, we examined the hypothesis that DPP4 inhibition with Saxa attenuates angiotensin II (ANG II)-induced kidney injury and albuminuria via attenuation of immune activation in the kidney. To this end, male mice were infused with either vehicle or ANG II (1,000 ng/kg/min, s.c.) for 3 wk and received either placebo or Saxa (10 mg/kg/day, p.o.) during the final 2 wk. ANG II infusion increased kidney, but not plasma, DPP4 activity in vivo as well as DPP4 activity in cultured proximal tubule cells. The latter was prevented by angiotensin receptor blockade with olmesartan. Further, ANG II induced hypertension and kidney injury characterized by mesangial expansion, mitochondrial damage, reduced brush border megalin expression, and albuminuria. Saxa inhibited DPP4 activity ∼50% in vivo and attenuated ANG II-mediated kidney injury, independent of blood pressure. Further mechanistic experiments revealed mitigation by Saxa of proinflammatory and profibrotic mediators activated by ANG II in the kidney, including CD8+ T cells, resident macrophages (CD11bhiF4/80loLy6C-), and neutrophils. In addition, Saxa improved ANG II suppressed anti-inflammatory regulatory T cell and T helper 2 lymphocyte activity. Taken together, these results demonstrate, for the first time, blood pressure-independent involvement of renal DPP4 activation contributing to RAAS-dependent kidney injury and immune activation.NEW & NOTEWORTHY This work highlights the role of dipeptidyl peptidase-4 (DPP4) in promoting ANG II-mediated kidney inflammation and injury. Specifically, ANG II infusion in mice led to increases in blood pressure and kidney DPP4 activity, which then led to activation of CD8+ T cells, Ly6C- macrophages, and neutrophils and suppression of anti-inflammatory T helper 2 lymphocytes and regulatory T cells. Collectively, this led to kidney injury, characterized by mesangial expansion, mitochondrial damage, and albuminuria, which were mitigated by DPP4 inhibition independent of blood pressure reduction.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Hipoglicemiantes/farmacologia , Macrófagos/metabolismo , Angiotensina II/farmacologia , Animais , Inibidores da Dipeptidil Peptidase IV/farmacologia , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos
15.
Exp Brain Res ; 239(12): 3487-3505, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34524491

RESUMO

Sustained limb motor activity has been used as a therapeutic tool for improving rehabilitation outcomes and is thought to be mediated by neuroplastic changes associated with activity-induced cortical excitability. Although prior research has reported enhancing effects of continuous chewing and swallowing activity on learning, the potential beneficial effects of sustained oromotor activity on speech improvements is not well-documented. This exploratory study was designed to examine the effects of continuous oromotor activity on subsequent speech learning. Twenty neurologically healthy young adults engaged in periods of continuous chewing and speech after which they completed a novel speech motor learning task. The motor learning task was designed to elicit improvements in accuracy and efficiency of speech performance across repetitions of eight-syllable nonwords. In addition, transcranial magnetic stimulation was used to measure the cortical silent period (cSP) of the lip motor cortex before and after the periods of continuous oromotor behaviors. All repetitions of the nonword task were recorded acoustically and kinematically using a three-dimensional motion capture system. Productions were analyzed for accuracy and duration, as well as lip movement distance and speed. A control condition estimated baseline improvement rates in speech performance. Results revealed improved speech performance following 10 min of chewing. In contrast, speech performance following 10 min of continuous speech was degraded. There was no change in the cSP as a result of either oromotor activity. The clinical implications of these findings are discussed in the context of speech rehabilitation and neuromodulation.


Assuntos
Córtex Motor , Fala , Fenômenos Biomecânicos , Potencial Evocado Motor , Humanos , Aprendizagem , Medida da Produção da Fala , Estimulação Magnética Transcraniana , Adulto Jovem
16.
Mem Cognit ; 49(6): 1067-1081, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33855674

RESUMO

Memories are encoded in a manner that depends on our knowledge and expectations ("schemas"). Consistent with this, expertise tends to improve memory: Experts have elaborated schemas in their domains of expertise, allowing them to efficiently represent information in this domain (e.g., chess experts have enhanced memory for realistic chess layouts). On the other hand, in most situations, people tend to remember abnormal or surprising items best-those that are also rare or out-of-the-ordinary occurrences (e.g., surprising-but not random-chess board configurations). This occurs, in part, because such images are distinctive relative to other images. In the current work, we ask how these factors interact in a particularly interesting case-the domain of radiology, where experts actively search for abnormalities. Abnormality in mammograms is typically focal but can be perceived in the global "gist" of the image. We ask whether, relative to novices, expert radiologists show improved memory for mammograms. We also test for any additional advantage for abnormal mammograms that can be thought of as unexpected or rare stimuli in screening. We find that experts have enhanced memory for focally abnormal images relative to normal images. However, radiologists showed no memory benefit for images of the breast that were not focally abnormal, but were only abnormal in their gist. Our results speak to the role of schemas and abnormality in expertise; the necessity for spatially localized abnormalities versus abnormalities in the gist in enhancing memory; and the nature of memory and decision-making in radiologists.


Assuntos
Cognição , Rememoração Mental , Humanos
17.
Behav Sci Law ; 39(3): 369-382, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33559314

RESUMO

This study examined the effects of pre-trial preparation and pre-recorded cross-examinations on the linguistic complexity of recognition prompts (i.e., option-posing or suggestive questions) used when questioning child victims in English criminal courts. The study also compared the linguistic complexity of recognition prompts that did and did not contain suggestive content. Analyses compared 43 cases that involved pre-recorded cross-examinations with pre-trial preparation and 44 cases that did not, which occurred between 2012 and 2016. Cases utilizing the "special measures" contained fewer linguistically complex prompts with and without suggestive content than did their counterparts, demonstrating the benefits of those special measures. Overall, linguistically complex recognition prompts were more likely to contain suggestive content than other recognition prompts. However, linguistically complex prompts with and without suggestive content were still frequently used despite the special measures, demonstrating the need for further professional training to improve the quality of children's evidence.


Assuntos
Abuso Sexual na Infância , Criança , Família , Humanos , Reconhecimento Psicológico , Comportamento Sexual
18.
Psychol Public Policy Law ; 27(3): 328-340, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34866883

RESUMO

Little is known about the relation between law enforcement interviewing behaviors and commercially sexually exploited children's (CSEC) reluctance. This study examined the relation between officers' use of maximization, (references to) expertise, minimization, and support and adolescent CSEC victims' reluctance in a small sample of police interviews (n = 2,416 question-answer pairs across ten interviews). Twenty-six percent of officers' utterances contained at least one interviewing tactic. When statements were paired with maximization, they were correlated with more reluctance than when they were not paired with an interviewing tactic. Contrary to predictions, support was also related to greater reluctance. Open-ended (recall) questions and statements were associated with greater reluctance than closed-ended (recognition) questions. The results highlight the importance of understanding the context in which interviewing strategies are employed when assessing the relation between interviewer behavior and interviewee reluctance.

19.
Chemphyschem ; 21(6): 484-493, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31944529

RESUMO

The solubility of hydrophobic molecules in water is sensitive to salt addition in an ion-specific manner. Such "salting-out" and "salting-in" properties have been shown to be a major contributor to the measured ion-specific Hofmeister effects that are observed in many biophysical phenomena. Various theoretical models have suggested a number of disparate mechanisms for salting-out (salting-in) of hydrophobic moieties, the most popular of which include preferential interaction, water-mediated association, and electrostriction models. However, a complete molecular level description of this ion-specificity is not yet available. This work investigates the ion-specific nature of hydrophobic solvation by studying how sodium and chloride salts affect the thermodynamics of 1,2-hexanediol micellization. The results of this study are analyzed in terms of scaled-particle theory and we show that salt addition can affect hydrophobic solvation in two modalities: salt addition changes the cavitation free energy; salt addition also influences the solvent-solute interaction energy by changing the hydration of the hydrophobic solute. These two effects are salt specific in nature and we suggest that for small hydrophobic solutes these effects are the main cause of salt-specific Hofmeister effects on their solubility.

20.
Arch Environ Contam Toxicol ; 78(1): 124-136, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31705152

RESUMO

A plan to create solution-mined salt caverns for natural gas storage by discharging brine into the Shubenacadie River estuary poses a potential risk to an "endangered" stock of striped bass. Toxicity of brine made from both salt-core and artificial sea-salt "Instant Ocean" was assessed by 1-h acute toxicity tests at both 19 °C and 12 °C, the typical thermal range in June, post-spawning. The short test duration was justified given the rapid dilution of the brine in the macrotidal estuary. The median lethal concentration (LC50 1 h) 95% confidence intervals of salt-core brine at 19 °C for eggs was 51-60 parts per thousand (ppt); yolk-sac larvae 34-55 ppt; first-feeding stage larvae (6-8 mm total length, TL) 37-44 ppt, and 30-46 ppt for large larvae (14-20 mm TL). Among juveniles, the median lethal concentration was significantly higher compared to larvae: 51-58 ppt for early juveniles (4-cm fork length, FL) and 63-67 ppt for juveniles 12-cm FL. The toxicity of brine made from either Instant Ocean or salt-core was similar. At 12 °C, yolk-sac larvae salinity tolerance was 30% lower than at 19 °C, whereas other life stages exhibited a similar response to 12 °C and 19 °C. The threshold observed effect concentration (TOEC) of the salt-core ranged from 24.4 ppt on large larvae to 59.7 ppt on 12-cm juveniles. In conclusion, a very low direct threat to striped bass is estimated for the discharge of brine into the Shubenacadie River estuary.


Assuntos
Bass/crescimento & desenvolvimento , Cavernas , Larva/efeitos dos fármacos , Rios/química , Sais/toxicidade , Animais , Nova Escócia , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA