Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hippocampus ; 31(4): 375-388, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33432721

RESUMO

Adult-born granule cells (abGCs) integrate into the hippocampus and form connections with dentate gyrus parvalbumin-positive (PV+) interneurons, a circuit important for modulating plasticity. Many of these interneurons are surrounded by perineuronal nets (PNNs), extracellular matrix structures known to participate in plasticity. We compared abGC projections to PV+ interneurons with negative-to-low intensity PNNs to those with high intensity PNNs using retroviral and 3R-Tau labeling in adult mice, and found that abGC mossy fibers and boutons are more frequently located near PV+ interneurons with high intensity PNNs. These results suggest that axons of new neurons preferentially stabilize near target cells with intense PNNs. Next, we asked whether the number of abGCs influences PNN formation around PV+ interneurons, and found that near complete ablation of abGCs produced a decrease in the intensity and number of PV+ neurons with PNNs, suggesting that new neuron innervation may enhance PNN formation. Experience-driven changes in adult neurogenesis did not produce consistent effects, perhaps due to widespread effects on plasticity. Our study identifies abGC projections to PV+ interneurons with PNNs, with more presumed abGC mossy fiber boutons found near the cell body of PV+ interneurons with strong PNNs.


Assuntos
Fibras Musgosas Hipocampais , Parvalbuminas , Animais , Matriz Extracelular/metabolismo , Interneurônios/metabolismo , Camundongos , Fibras Musgosas Hipocampais/metabolismo , Neurogênese , Parvalbuminas/metabolismo
2.
Neurobiol Learn Mem ; 155: 50-59, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29908973

RESUMO

Increases in the number and/or the size of dendritic spines, sites of excitatory synapses, have been linked to different types of learning as well as synaptic plasticity in several brain regions, including the hippocampus, sensory cortex, motor cortex, and cerebellum. By contrast, a previous study reported that training on a maze task requiring the dorsal striatum has no effect on medium spiny neuron dendritic spines in this area. These findings might suggest brain region-specific differences in levels of plasticity as well as different cellular processes underlying different types of learning. No previous studies have investigated whether dendritic spine density changes may be localized to specific subpopulations of medium spiny neurons, nor have they examined dendritic spines in rats trained on a dorsolateral striatum-dependent maze task in comparison to rats exposed to the same type of maze in the absence of training. To address these questions further, we labeled medium spiny neurons with the lipophilic dye DiI and stained for the protein product of immediate early gene zif 268, an indirect marker of neuronal activation, in both trained and untrained groups. We found a small but significant increase in dendritic spine density on medium spiny neurons of the dorsolateral striatum after short-term intensive training, along with robust increases in the density of spines with mushroom morphology coincident with reductions in the density of spines with thin morphology. However, these results were not associated with zif 268 expression. Our findings suggest that short-term intensive training on a dorsolateral striatum-dependent maze task induces rapid increases in dendritic spine density and maturation on medium spiny neurons of the dorsolateral striatum, an effect which may contribute to early acquisition of the learned response in maze training.


Assuntos
Comportamento Animal/fisiologia , Corpo Estriado/fisiologia , Espinhas Dendríticas/fisiologia , Aprendizagem em Labirinto/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
3.
Biol Psychiatry Glob Open Sci ; 2(4): 460-469, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36324654

RESUMO

Background: Excessive repetitive behavior is a debilitating symptom of several neuropsychiatric disorders. Parvalbumin-positive inhibitory interneurons in the dorsal striatum have been linked to repetitive behavior, and a sizable portion of these cells are surrounded by perineuronal nets (PNNs), specialized extracellular matrix structures. Although PNNs have been associated with plasticity and neuropsychiatric disease, no previous studies have investigated their involvement in excessive repetitive behavior. Methods: We used histochemistry and confocal imaging to investigate PNNs surrounding parvalbumin-positive cells in the dorsal striatum of 4 mouse models of excessive repetitive behavior (BTBR, Cntnap2, Shank3, prenatal valproate treatment). We then investigated one of these models, the BTBR mouse, in detail, with DiI labeling, in vivo and in vitro recordings, and behavioral analyses. We next degraded PNNs in the dorsomedial striatum (DMS) using the enzyme chondroitinase ABC and assessed dendritic spine density, electrophysiology, and repetitive behavior. Results: We found a greater percentage of parvalbumin-positive interneurons with PNNs in the DMS of all 4 mouse models of excessive repetitive behavior compared with control mice. In BTBR mice, we found fewer dendritic spines on medium spiny neurons (targets of parvalbumin-positive interneurons) and differences in neuronal oscillations as well as inhibitory postsynaptic potentials compared with control mice. Reduction of DMS PNNs in BTBR mice altered dendritic spine density and inhibitory responses and normalized repetitive behavior. Conclusions: These findings suggest that cellular abnormalities in the DMS are associated with maladaptive repetitive behaviors and that manipulating PNNs can restore normal levels of repetitive behavior while altering DMS dendritic spines and inhibitory signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA