Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(41): e202310851, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37632357

RESUMO

Nitroaromatic compounds represent one of the essential classes of molecules that are widely used as feedstock for the synthesis of intermediates, the preparation of nitro-derived pharmaceuticals, agrochemicals, and materials on both laboratory and industrial scales. We herein disclose the efficient, mild, and catalytic ipso-nitration of organotrimethylsilanes, enabled by an electrophilic N-nitrosaccharin reagent and allows chemoselective nitration under mild reaction conditions, while exhibiting remarkable substrate generality and functional group compatibility. Additionally, the reaction conditions proved to be orthogonal to other common functionalities, allowing programming of molecular complexity via successive transformations or late-stage nitration. Detailed mechanistic investigation by experimental and computational approaches strongly supported a classical electrophilic aromatic substitution (SE Ar) mechanism, which was found to proceed through a highly ordered transition state.

2.
Amino Acids ; 52(5): 755-769, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32430874

RESUMO

Herein, we described the synthesis of two L-phenylalanines α-derivatized with a terminal alkyne moiety whose structures differed by phenyl ring halogen substitution (two o-Cl in 1 vs. one p-Br in 2) and investigated their effect on biological macromolecules and living cells. We explored their interaction with quadruplex DNA (G4 DNA), using tel26 and c-myc as models, and bovine serum albumin (BSA). By CD spectroscopy, we found that 1 caused minor tel26 secondary structure changes, leading also to a slight thermal stabilization of this hybrid antiparallel/parallel G4 structure, while the c-myc parallel topology remained essentially unchanged upon 1 binding. Other CD evidences showed the ability of 1 to bind BSA, while molecular docking studies suggested that the same molecule could be housed into the hydrophobic cavity between sub-domains IIA, IIB, and IIIA of the protein. Furthermore, preliminary aggregation studies, based on concentration-dependent spectroscopic experiments, suggested the ability of 1 to aggregate forming noncovalent polymeric systems in aqueous solution. Differently from 1, the bromine-modified compound was able to bind Cu(II) ion, likely with the formation of a CuL2 complex, as found by UV spectroscopy. Finally, cell tests excluded any cytotoxic effect of both compounds toward normal cells, but showed slight antiproliferative effects of 2 on PC3 cancerous cells at 24 h, and of 1 on both T98G and MDA-MB-231 cancer cells at 48 h.


Assuntos
Alcinos/química , Antineoplásicos/farmacologia , Cobre/metabolismo , Neoplasias/tratamento farmacológico , Fenilalanina/química , Fenilalanina/farmacologia , Soroalbumina Bovina/metabolismo , Antineoplásicos/química , Sítios de Ligação , Proliferação de Células , Humanos , Simulação de Acoplamento Molecular , Neoplasias/patologia , Ligação Proteica
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 229: 117884, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31927477

RESUMO

Herein, we present a spectroscopic (CD and UV) and SEM study of a phenylalanine derivative carrying a terminal alkyne moiety and indicated by us CF3IIIPhe, with particular attention to its interaction with Cu(II) cation and some biological macromolecules, as well as a preliminary evaluation of its effect on cancerous cells. CD spectroscopy evidenced the ability of CF3IIIPhe to interact with tel26 and c-myc, two quadruplex DNA (G4 DNA) models explored in this study. Other CD and UV studies revealed the ability of the unnatural amino acid to form aggregates in aqueous solution, to bind Cu(II) cation, and to interact with bovine serum albumin (BSA). Cellular studies demonstrated CF3IIIPhe antiproliferative activity on PC3 cells. Its ability to bind telomeric DNA was verified with tel26 by CD investigation and SEM analysis, that revealed a noteworthy change in DNA morphology (mainly based on nanosphere structures) by CF3IIIPhe, confirming its G4-DNA binding ability already evidenced by spectroscopy.


Assuntos
Antineoplásicos , DNA de Neoplasias/metabolismo , Quadruplex G , Neoplasias/tratamento farmacológico , Telômero/metabolismo , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , DNA de Neoplasias/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Células PC-3 , Telômero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA