RESUMO
Glioblastoma is a highly aggressive primary brain tumour, renowned for its infiltrative growth and varied genetic profiles. The current treatment options are insufficient, and their off-target effects greatly reduce patient quality of life. The major challenge in improving glioblastoma diagnosis and treatment involves the development of a targeted imaging and drug delivery platform, capable of circumventing the blood brain barrier and specifically targeting glioblastoma tumours. The unique properties of aptamers demonstrate their capability of bridging the gap to the development of successful diagnosis and treatment options, where antibodies have previously failed. Aptamers possess many characteristics that make them an ideal novel imaging and therapeutic agent for the treatment of glioblastoma and other brain malignancies, and are likely to provide patients with a better standard of care and improved quality of life. Their target sensitivity, selective nature, ease of modification and low immunogenicity make them an ideal drug-delivery platform. This review article summarises the aptamers previously generated against glioblastoma cells or its identified biomarkers, and their potential application in diagnosis and therapeutic targeting of glioblastoma tumours.
Assuntos
Aptâmeros de Nucleotídeos/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Humanos , Técnica de Seleção de AptâmerosRESUMO
With an incidence of ~1 in 800 births, Down syndrome (DS) is the most common chromosomal condition linked to intellectual disability worldwide. While the genetic basis of DS has been identified as a triplication of chromosome 21 (HSA21), the genes encoded from HSA21 that directly contribute to cognitive deficits remain incompletely understood. Here, we found that the HSA21-encoded chromatin effector, BRWD1, was upregulated in neurons derived from iPS cells from an individual with Down syndrome and brain of trisomic mice. We showed that selective copy number restoration of Brwd1 in trisomic animals rescued deficits in hippocampal LTP, cognition and gene expression. We demonstrated that Brwd1 tightly binds the BAF chromatin remodeling complex, and that increased Brwd1 expression promotes BAF genomic mistargeting. Importantly, Brwd1 renormalization rescued aberrant BAF localization, along with associated changes in chromatin accessibility and gene expression. These findings establish BRWD1 as a key epigenomic mediator of normal neurodevelopment and an important contributor to DS-related phenotypes.
Assuntos
Transtornos Cognitivos , Síndrome de Down , Camundongos , Animais , Síndrome de Down/genética , Síndrome de Down/metabolismo , Variações do Número de Cópias de DNA/genética , Modelos Animais de Doenças , Transtornos Cognitivos/genética , Cromatina/genética , Camundongos TransgênicosRESUMO
Abnormally phosphorylated tau, an early neuropathologic marker of Alzheimer's disease (AD), first occurs in the brain's entorhinal cortex layer II (ECII) and then spreads to the CA1 field of the hippocampus. Animal models of tau propagation aiming to recapitulate this phenomenon mostly show tau transfer from ECII stellate neurons to the dentate gyrus, but tau pathology in the dentate gyrus does not appear until advanced stages of AD. Wolframin-1expressing (Wfs1+) pyramidal neurons have been shown functionally to modulate hippocampal CA1 neurons in mice. Here, we report that Wfs1+ pyramidal neurons are conserved in the ECII of postmortem human brain tissue and that Wfs1 colocalized with abnormally phosphorylated tau in brains from individuals with early AD. Wfs1+ neuronspecific expression of human P301L mutant tau in mouse ECII resulted in transfer of tau to hippocampal CA1 pyramidal neurons, suggesting spread of tau pathology as observed in the early Braak stages of AD. In mice expressing human mutant tau specifically in the ECII brain region, electrophysiological recordings of CA1 pyramidal neurons showed reduced excitability. Multielectrode array recordings of optogenetically stimulated Wfs1+ ECII axons resulted in reduced CA1 neuronal firing. Chemogenetic activation of CA1 pyramidal neurons showed a reduction in c-fos+ cells in the CA1. Last, a fear conditioning task revealed deficits in trace and contextual memory in mice overexpressing human mutant tau in the ECII. This work demonstrates tau transfer from the ECII to CA1 in mouse brain and provides an early Braak stage preclinical model of AD.
Assuntos
Córtex Entorrinal , Hipocampo , Animais , Camundongos , NeurôniosRESUMO
Neuroinflammatory processes play an integral role in the exacerbation and progression of pathology in tauopathies, a class of neurodegenerative disease characterized by aggregation of hyperphosphorylated tau protein. The RNA binding protein (RBP) T-cell Intracellular Antigen 1 (TIA1) is an important regulator of the innate immune response in the periphery, dampening cytotoxic inflammation and apoptosis during cellular stress, however, its role in neuroinflammation is unknown. We have recently shown that TIA1 regulates tau pathophysiology and toxicity in part through the binding of phospho-tau oligomers into pathological stress granules, and that haploinsufficiency of TIA1 in the P301S mouse model of tauopathy results in reduced accumulation of toxic tau oligomers, pathologic stress granules, and the development of downstream pathological features of tauopathy. The putative role of TIA1 as a regulator of the peripheral immune response led us to investigate the effects of TIA1 on neuroinflammation in the context of tauopathy, a chronic stressor in the neural environment. Here, we evaluated indicators of neuroinflammation including; reactive microgliosis and phagocytosis, pro-inflammatory cytokine release, and oxidative stress in hippocampal neurons and glia of wildtype and P301S transgenic mice expressing TIA1+/+, TIA1+/-, and TIA1-/- in both early (5 month) and advanced (9 month) disease states through biochemical, ultrastructural, and histological analyses. Our data show that both TIA1 haploinsufficiency and TIA1 knockout exacerbate neuroinflammatory processes in advanced stages of tauopathy, suggesting that TIA1 dampens the immune response in the central nervous system during chronic stress.
RESUMO
The epithelial cell adhesion molecule (EpCAM), or CD326, was one of the first cancer associated biomarkers to be discovered. In the last forty years, this biomarker has been investigated for use in personalized cancer therapy, with the first monoclonal antibody, edrecolomab, being trialled in humans more than thirty years ago. Since then, several other monoclonal antibodies have been raised to EpCAM and tested in clinical trials. However, while monoclonal antibody therapy has been investigated against EpCAM for almost 40 years as primary or adjuvant therapy, it has not shown as much promise as initially heralded. In this review, we look at the reasons why and consider alternative targeting options, such as aptamers, to turn this almost ubiquitously expressed epithelial cancer biomarker into a viable target for future personalized therapy.