Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 41(32): 6954-6965, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34253630

RESUMO

Episodic memory requires information to be stored and recalled in sequential order, and these processes are disrupted in schizophrenia. Hippocampal phase precession and theta sequences are thought to provide a biological mechanism for sequential ordering of experience at timescales suitable for plasticity. These phenomena have not previously been examined in any models of schizophrenia risk. Here, we examine these phenomena in a maternal immune activation (MIA) rodent model. We show that while individual pyramidal cells in the CA1 region continue to precess normally in MIA animals, the starting phase of precession as an animal enters a new place field is considerably more variable in MIA animals than in controls. A critical consequence of this change is a disorganization of the ordered representation of experience via theta sequences. These results provide the first evidence of a biological-level mechanism that, if it occurs in schizophrenia, may explain aspects of disorganized sequential processing that contribute to the cognitive symptoms of the disorder.SIGNIFICANCE STATEMENT Hippocampal phase precession and theta sequences have been proposed as biophysical mechanisms by which the sequential structure of cognition might be ordered. Disturbances of sequential processing have frequently been observed in schizophrenia. Here, we show for the first time that phase precession and theta sequences are disrupted in a maternal immune activation (MIA) model of schizophrenia risk. This is a result of greater variability in the starting phase of precession, indicating that the mechanisms that coordinate precession at the assembly level are disrupted. We propose that this disturbance in phase precession underlies some of the disorganized cognitive symptoms that occur in schizophrenia. These findings could have important preclinical significance for the identification and treatment of schizophrenia risk factors.


Assuntos
Hipocampo/fisiopatologia , Memória Episódica , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Esquizofrenia/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Inflamação/induzido quimicamente , Indutores de Interferon/toxicidade , Masculino , Exposição Materna/efeitos adversos , Poli I-C/toxicidade , Gravidez , Ratos Sprague-Dawley , Esquizofrenia/etiologia
2.
Vaccine ; 34(26): 3001-3005, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27040400

RESUMO

A human hookworm vaccine is under development and in clinical trials in Africa and the Americas. The vaccine contains the Na-APR-1 and Na-GST-1 antigens. It elicits neutralizing antibodies that interfere with establishment of the adult hookworm in the gut and the ability of the parasite to feed on blood. The vaccine target product profile is focused on the immunization of children to prevent hookworm infection and anemia caused by Necator americanus. It is intended for use in low- and middle-income countries where hookworm is highly endemic and responsible for at least three million disability-adjusted life years. So far, the human hookworm vaccine is being developed in the non-profit sector through the Sabin Vaccine Institute Product Development Partnership (PDP), in collaboration with the HOOKVAC consortium of European and African partners. We envision the vaccine to be incorporated into health systems as part of an elimination strategy for hookworm infection and other neglected tropical diseases, and as a means to reduce global poverty and address the Sustainable Development Goals.


Assuntos
Anemia/prevenção & controle , Infecções por Uncinaria/prevenção & controle , Vacinas/uso terapêutico , Anemia/parasitologia , Animais , Pesquisa Biomédica/tendências , Ensaios Clínicos como Assunto , Cães , Infecções por Uncinaria/complicações , Humanos , Necator americanus
3.
Vaccine ; 34(26): 2988-2991, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27036511

RESUMO

Several candidate human schistosomiasis vaccines are in different stages of preclinical and clinical development. The major targets are Schistosoma haematobium (urogenitial schistosomiasis) and Schistosoma mansoni (intestinal schistosomiasis) that account for 99% of the world's 252 million cases, with 90% of these cases in Africa. Two recombinant S. mansoni vaccines - Sm-TSP-2 and Sm-14 are in Phase 1 trials, while Smp80 (calpain) is undergoing testing in non-human primates. Sh28GST, also known as Bilhvax is in advanced clinical development for S. haematobium infection. The possibility remains that some of these vaccines may cross-react to target both schistosome species. These vaccines were selected on the basis of their protective immunity in preclinical challenge models, through human immune-epidemiological studies or both. They are being advanced through a combination of academic research institutions, non-profit vaccine product development partnerships, biotechnology companies, and developing country vaccine manufacturers. In addition, new schistosome candidate vaccines are being identified through bioinformatics, OMICs approaches, and moderate throughput screening, although the full potential of reverse vaccinology for schistosomiasis has not yet been realized. The target product profiles of these vaccines vary but many focus on vaccinating children, in some cases following mass treatment with praziquantel, also known as vaccine-linked chemotherapy. Several regulatory pathways have been proposed, some of which rely on World Health Organization prequalification.


Assuntos
Esquistossomose/prevenção & controle , Vacinas/uso terapêutico , Animais , Antígenos de Bactérias/imunologia , Antígenos de Helmintos/imunologia , Pesquisa Biomédica/tendências , Ensaios Clínicos como Assunto , Proteínas de Transporte de Ácido Graxo/imunologia , Glutationa Transferase/imunologia , Proteínas de Helminto/imunologia , Humanos , Primatas , Schistosoma haematobium , Schistosoma mansoni , Tetraspaninas/imunologia , Vacinas Sintéticas/uso terapêutico
4.
Vaccine ; 34(26): 2992-2995, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-26973063

RESUMO

A number of leishmaniasis vaccine candidates are at various stages of pre-clinical and clinical development. Leishmaniasis is a vector-borne neglected tropical disease (NTD) caused by a protozoan parasite of the genus Leishmania and transmitted to humans by the bite of a sand fly. Visceral leishmaniasis (VL, kala-azar) is a high mortality NTD found mostly in South Asia and East Africa, while cutaneous leishmaniasis (CL) is a disfiguring NTD highly endemic in the Middle East, Central Asia, North Africa, and the Americas. Estimates attribute 50,000 annual deaths and 3.3 million disability-adjusted life years to leishmaniasis. There are only a few approved drug treatments, no prophylactic drug and no vaccine. Ideally, an effective vaccine against leishmaniasis will elicit long-lasting immunity and protect broadly against VL and CL. Vaccines such as Leish-F1, F2 and F3, developed at IDRI and designed based on selected Leishmania antigen epitopes, have been in clinical trials. Other groups, including the Sabin Vaccine Institute in collaboration with the National Institutes of Health are investigating recombinant Leishmania antigens in combination with selected sand fly salivary gland antigens in order to augment host immunity. To date, both VL and CL vaccines have been shown to be cost-effective in economic modeling studies.


Assuntos
Vacinas contra Leishmaniose/uso terapêutico , Leishmaniose/prevenção & controle , Animais , Pesquisa Biomédica/tendências , Ensaios Clínicos como Assunto , Humanos , Leishmaniose Cutânea/prevenção & controle , Leishmaniose Visceral/prevenção & controle , Psychodidae/parasitologia , Vacinas Sintéticas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA