Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Anal Bioanal Chem ; 414(22): 6601-6610, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35821276

RESUMO

Proteases are critical proteins involved in cleaving substrates that may impact biological pathways, cellular processes, or disease progression. In the biopharmaceutical industry, modulating the levels of protease activity is an important strategy for mitigating many types of diseases. While a variety of analytical tools exist for characterizing substrate cleavages, in vitro functional screening for antibody inhibitors of protease activity using physiologically relevant intact protein substrates remains challenging. In addition, detecting such large protein substrates with high heterogeneity using high-throughput mass spectrometry screening has rarely been reported in the literature with concerns for assay robustness and sensitivity. In this study, we established a peptide-based in vitro functional screening assay for antibody inhibitors of mouse bone morphogenic protein 1 (mBMP1) metalloprotease using a heterogeneous recombinant 66-kDa mouse Procollagen I alpha 1 chain (mProcollagen) substrate. We compared several analytical tools including capillary gel electrophoresis Western blot (CE-Western blot), as well as both intact protein and peptide-based mass spectrometry (MS) to quantitate the mBMP1 proteolytic activity and its inhibition by antibodies using this heterogeneous mProcollagen substrate. We concluded that the peptide-based mass spectrometry screening assay was the most suitable approach in terms of throughput, sensitivity, and assay robustness. We then optimized our mBMP1 proteolysis reaction after characterizing the enzyme kinetics using the peptide-based MS assay. This assay resulted in Z' values ranging from 0.6 to 0.8 from the screening campaign. Among over 1200 antibodies screened, IC50 characterization was performed on the top candidate hits, which showed partial or complete inhibitory activities against mBMP1.


Assuntos
Peptídeos , Pró-Colágeno , Animais , Espectrometria de Massas , Camundongos , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Pró-Colágeno/metabolismo , Proteínas/metabolismo , Proteólise , Especificidade por Substrato
2.
Am J Physiol Cell Physiol ; 320(2): C162-C174, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33206546

RESUMO

Proteolytic processing of procollagens is a central step during collagen fibril formation. Bone morphogenic protein 1 (BMP1) is a metalloprotease that plays an important role in the cleavage of carboxy-terminal (COOH-terminal) propeptides from procollagens. Although the removal of propeptides is required to generate mature collagen fibrils, the contribution of BMP1 to this proteolytic process and its action site remain to be fully determined. In this study, using postnatal lung fibroblasts as a model system, we showed that genetic ablation of Bmp1 in primary murine lung fibroblasts abrogated COOH-terminal cleavage from type I procollagen as measured by COOH-terminal propeptide of type I procollagen (CICP) production. We also showed that inhibition of BMP1 by siRNA-mediated knockdown or small-molecule inhibitor reduced the vast majority of CICP production and collagen deposition in primary human lung fibroblasts. Furthermore, we discovered and characterized two antibody inhibitors for BMP1. In both postnatal lung fibroblast and organoid cultures, BMP1 blockade prevented CICP production. Together, these findings reveal a nonredundant role of extracellular BMP1 to process CICP in lung fibroblasts and suggest that development of antibody inhibitors is a viable pharmacological approach to target BMP1 proteinase activity in fibrotic diseases.


Assuntos
Proteína Morfogenética Óssea 1/metabolismo , Líquido Extracelular/metabolismo , Fibroblastos/metabolismo , Pulmão/metabolismo , Fragmentos de Peptídeos/metabolismo , Pró-Colágeno/metabolismo , Proteólise , Sequência de Aminoácidos , Animais , Proteína Morfogenética Óssea 1/antagonistas & inibidores , Proteína Morfogenética Óssea 1/genética , Células CHO , Cricetinae , Cricetulus , Líquido Extracelular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Células HEK293 , Humanos , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Organoides , Oxidiazóis/farmacologia , Fragmentos de Peptídeos/genética , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Pró-Colágeno/genética , Inibidores de Proteases/farmacologia , Proteólise/efeitos dos fármacos , Coelhos
3.
mBio ; 12(3): e0020221, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34061593

RESUMO

Pseudomonas aeruginosa causes life-threatening infections that are associated with antibiotic failure. Previously, we identified the antibiotic G2637, an analog of arylomycin, targeting bacterial type I signal peptidase, which has moderate potency against P. aeruginosa. We hypothesized that an antibody-antibiotic conjugate (AAC) could increase its activity by colocalizing P. aeruginosa bacteria with high local concentrations of G2637 antibiotic in the intracellular environment of phagocytes. Using a novel technology of screening for hybridomas recognizing intact bacteria, we identified monoclonal antibody 26F8, which binds to lipopolysaccharide O antigen on the surface of P. aeruginosa bacteria. This antibody was engineered to contain 6 cysteines and was conjugated to the G2637 antibiotic via a lysosomal cathepsin-cleavable linker, yielding a drug-to-antibody ratio of approximately 6. The resulting AAC delivered a high intracellular concentration of free G2637 upon phagocytosis of AAC-bound P. aeruginosa by macrophages, and potently cleared viable P. aeruginosa bacteria intracellularly. The molar concentration of AAC-associated G2637 antibiotic that resulted in elimination of bacteria inside macrophages was approximately 2 orders of magnitude lower than the concentration of free G2637 required to eliminate extracellular bacteria. This study demonstrates that an anti-P. aeruginosa AAC can locally concentrate antibiotic and kill P. aeruginosa inside phagocytes, providing additional therapeutic options for antibiotics that are moderately active or have an unfavorable pharmacokinetics or toxicity profile. IMPORTANCE Antibiotic treatment of life-threatening P. aeruginosa infections is associated with low clinical success, despite the availability of antibiotics that are active in standard microbiological in vitro assays, affirming the need for new therapeutic approaches. Antibiotics often fail in the preclinical stage due to insufficient efficacy against P. aeruginosa. One potential strategy is to enhance the local concentration of antibiotics with limited inherent anti-P. aeruginosa activity. This study presents proof of concept for an antibody-antibiotic conjugate, which releases a high local antibiotic concentration inside macrophages upon phagocytosis, resulting in potent intracellular killing of phagocytosed P. aeruginosa bacteria. This approach may provide new therapeutic options for antibiotics that are dose limited.


Assuntos
Antibacterianos/farmacologia , Anticorpos Monoclonais/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/imunologia , Animais , Antibacterianos/química , Antibacterianos/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Humanos , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Estudo de Prova de Conceito , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/metabolismo , Células RAW 264.7 , Ratos
4.
Mol Cancer Ther ; 17(3): 638-649, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29282299

RESUMO

Luminal A (hormone receptor-positive) breast cancer constitutes 70% of total breast cancer patients. In an attempt to develop a targeted therapeutic for this cancer indication, we have identified and characterized Glial cell line-Derived Neurotrophic Factor (GDNF) Family Receptor Alpha 1 (GFRA1) antibody-drug conjugates (ADC) using a cleavable valine-citrulline-MMAE (vcMMAE) linker-payload. RNAseq and IHC analysis confirmed the abundant expression of GFRA1 in luminal A breast cancer tissues, whereas minimal or no expression was observed in most normal tissues. Anti-GFRA-vcMMAE ADC internalized to the lysosomes and exhibited target-dependent killing of GFRA1-expressing cells both in vitro and in vivo The ADCs using humanized anti-GFRA1 antibodies displayed robust therapeutic activity in clinically relevant cell line-derived (MCF7 and KPL-1) tumor xenograft models. The lead anti-GFRA1 ADC cross-reacts with rodent and cynomolgus monkey GFRA1 antigen and showed optimal pharmacokinetic properties in both species. These properties subsequently enabled a target-dependent toxicity study in rats. Anti-GFRA1 ADC is well tolerated in rats, as seen with other vcMMAE linker-payload based ADCs. Overall, these data suggest that anti-GFRA1-vcMMAE ADC may provide a targeted therapeutic opportunity for luminal A breast cancer patients. Mol Cancer Ther; 17(3); 638-49. ©2017 AACR.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/antagonistas & inibidores , Imunoconjugados/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Anticorpos/química , Anticorpos/imunologia , Anticorpos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/imunologia , Células HEK293 , Humanos , Imunoconjugados/imunologia , Imunoconjugados/farmacocinética , Células MCF-7 , Macaca fascicularis , Camundongos Nus , Camundongos SCID , Ratos Sprague-Dawley , Receptores de Esteroides/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética
5.
MAbs ; 8(6): 1098-106, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27216702

RESUMO

For some antibodies intended for use as human therapeutics, reduced effector function is desired to avoid toxicities that might be associated with depletion of target cells. Since effector function(s), including antibody-dependent cell-mediated cytotoxicity (ADCC), require the Fc portion to be glycosylated, reduced ADCC activity antibodies can be obtained through aglycosylation of the human IgG1 isotype. An alternative is to switch to an IgG4 isotype in which the glycosylated antibody is known to have reduced effector function relative to glycosylated IgG1 antibody. ADCC activity of glycosylated IgG1 antibodies is sensitive to the fucosylation status of the Fc glycan, with both in vitro and in vivo ADCC activity increased upon fucose removal ("afucosylation"). The effect of afucosylation on activity of IgG4 antibodies is less well characterized, but it has been shown to increase the in vitro ADCC activity of an anti-CD20 antibody. Here, we show that both in vitro and in vivo activity of anti-CD20 IgG4 isotype antibodies is increased via afucosylation. Using blends of material made in Chinese hamster ovary (CHO) and Fut8KO-CHO cells, we show that ADCC activity of an IgG4 version of an anti-human CD20 antibody is directly proportional to the fucose content. In mice transgenic for human FcγRIIIa, afucosylation of an IgG4 anti-mouse CD20 antibody increases the B cell depletion activity to a level approaching that of the mIgG2a antibody.


Assuntos
Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Antígenos CD20/imunologia , Fucose/química , Imunoglobulina G/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Antígenos CD20/genética , Linfócitos B/imunologia , Sangue/imunologia , Células CHO , Cricetinae , Cricetulus , Feminino , Glicosilação , Humanos , Imunoglobulina G/química , Imunoglobulina G/genética , Linfonodos/imunologia , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Baço/imunologia
6.
JCI Insight ; 1(7): e86689, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27699264

RESUMO

Eosinophilic inflammation and Th2 cytokine production are central to the pathogenesis of asthma. Agents that target either eosinophils or single Th2 cytokines have shown benefits in subsets of biomarker-positive patients. More broadly effective treatment or disease-modifying effects may be achieved by eliminating more than one inflammatory stimulator. Here we present a strategy to concomitantly deplete Th2 T cells, eosinophils, basophils, and type-2 innate lymphoid cells (ILC2s) by generating monoclonal antibodies with enhanced effector function (19A2) that target CRTh2 present on all 4 cell types. Using human CRTh2 (hCRTh2) transgenic mice that mimic the expression pattern of hCRTh2 on innate immune cells but not Th2 cells, we demonstrate that anti-hCRTh2 antibodies specifically eliminate hCRTh2+ basophils, eosinophils, and ILC2s from lung and lymphoid organs in models of asthma and Nippostrongylus brasiliensis infection. Innate cell depletion was accompanied by a decrease of several Th2 cytokines and chemokines. hCRTh2-specific antibodies were also active on human Th2 cells in vivo in a human Th2-PBMC-SCID mouse model. We developed humanized hCRTh2-specific antibodies that potently induce antibody-dependent cell cytotoxicity (ADCC) of primary human eosinophils and basophils and replicated the in vivo depletion capacity of their murine parent. Therefore, depletion of hCRTh2+ basophils, eosinophils, ILC2, and Th2 cells with h19A2 hCRTh2-specific antibodies may be a novel and more efficacious treatment for asthma.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Asma/terapia , Células Th2/citologia , Animais , Anticorpos Monoclonais Humanizados/imunologia , Basófilos/citologia , Citocinas , Modelos Animais de Doenças , Eosinófilos/citologia , Humanos , Imunidade Inata , Pulmão/citologia , Pulmão/imunologia , Linfócitos/citologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Camundongos , Camundongos SCID , Camundongos Transgênicos
7.
MAbs ; 6(1): 95-107, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24121517

RESUMO

Multi-transmembrane proteins are especially difficult targets for antibody generation largely due to the challenge of producing a protein that maintains its native conformation in the absence of a stabilizing membrane. Here, we describe an immunization strategy that successfully resulted in the identification of monoclonal antibodies that bind specifically to extracellular epitopes of a 12 transmembrane protein, multi-drug resistant protein 4 (MRP4). These monoclonal antibodies were developed following hydrodynamic tail vein immunization with a cytomegalovirus (CMV) promoter-based plasmid expressing MRP4 cDNA and were characterized by flow cytometry. As expected, the use of the immune modulators fetal liver tyrosine kinase 3 ligand (Flt3L) and granulocyte-macrophage colony-stimulating factor positively enhanced the immune response against MRP4. Imaging studies using CMV-based plasmids expressing luciferase showed that the in vivo half-life of the target antigen was less than 48 h using CMV-based plasmids, thus necessitating frequent boosting with DNA to achieve an adequate immune response. We also describe a comparison of plasmids, which contained MRP4 cDNA with either the CMV or CAG promoters, used for immunizations. The observed luciferase activity in this comparison demonstrated that the CAG promoter-containing plasmid pCAGGS induced prolonged constitutive expression of MRP4 and an increased anti-MRP4 specific immune response even when the plasmid was injected less frequently. The method described here is one that can be broadly applicable as a general immunization strategy to develop antibodies against multi-transmembrane proteins, as well as target antigens that are difficult to express or purify in native and functionally active conformation.


Assuntos
Anticorpos/imunologia , Imunização , Proteínas Associadas à Resistência a Múltiplos Medicamentos/imunologia , Plasmídeos , Vacinas de DNA , Animais , Linhagem Celular , DNA Complementar/imunologia , DNA Complementar/farmacologia , Humanos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmídeos/imunologia , Plasmídeos/farmacologia , Estrutura Secundária de Proteína , Vacinas de DNA/imunologia , Vacinas de DNA/farmacologia
9.
J Mol Biol ; 425(11): 1899-1914, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23458406

RESUMO

Hepatitis C virus (HCV) infection is a major cause of liver disease and hepatocellular carcinoma. Glycan shielding has been proposed to be a mechanism by which HCV masks broadly neutralizing epitopes on its viral glycoproteins. However, the role of altered glycosylation in HCV resistance to broadly neutralizing antibodies is not fully understood. Here, we have generated potent HCV neutralizing antibodies hu5B3.v3 and MRCT10.v362 that, similar to the previously described AP33 and HCV1, bind to a highly conserved linear epitope on E2. We utilize a combination of in vitro resistance selections using the cell culture infectious HCV and structural analyses to identify mechanisms of HCV resistance to hu5B3.v3 and MRCT10.v362. Ultra deep sequencing from in vitro HCV resistance selection studies identified resistance mutations at asparagine N417 (N417S, N417T and N417G) as early as 5days post treatment. Comparison of the glycosylation status of soluble versions of the E2 glycoprotein containing the respective resistance mutations revealed a glycosylation shift from N417 to N415 in the N417S and N417T E2 proteins. The N417G E2 variant was glycosylated neither at residue 415 nor at residue 417 and remained sensitive to MRCT10.v362. Structural analyses of the E2 epitope bound to hu5B3.v3 Fab and MRCT10.v362 Fab using X-ray crystallography confirmed that residue N415 is buried within the antibody-peptide interface. Thus, in addition to previously described mutations at N415 that abrogate the ß-hairpin structure of this E2 linear epitope, we identify a second escape mechanism, termed glycan shifting, that decreases the efficacy of broadly neutralizing HCV antibodies.


Assuntos
Anticorpos Neutralizantes/imunologia , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Evasão da Resposta Imune , Polissacarídeos/imunologia , Processamento de Proteína Pós-Traducional , Proteínas do Envelope Viral/imunologia , Anticorpos Monoclonais/imunologia , Cristalografia por Raios X , Epitopos/química , Epitopos/imunologia , Hepacivirus/química , Hepacivirus/genética , Sequenciamento de Nucleotídeos em Larga Escala , Polissacarídeos/metabolismo , Conformação Proteica , RNA Viral/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA