RESUMO
Alternative lengthening of telomeres (ALT) is a homology-directed repair (HDR) mechanism of telomere elongation that controls proliferation in subsets of aggressive cancer. Recent studies have revealed that telomere repeat-containing RNA (TERRA) promotes ALT-associated HDR (ALT-HDR). Here, we report that RAD51AP1, a crucial ALT factor, interacts with TERRA and utilizes it to generate D- and R-loop HR intermediates. We also show that RAD51AP1 binds to and might stabilize TERRA-containing R-loops as RAD51AP1 depletion reduces R-loop formation at telomere DNA breaks. Proteomic analyses uncover a role for RAD51AP1-mediated TERRA R-loop homeostasis in a mechanism of chromatin-directed suppression of TERRA and prevention of transcription-replication collisions (TRCs) during ALT-HDR. Intriguingly, we find that both TERRA binding and this non-canonical function of RAD51AP1 require its intrinsic SUMO-SIM regulatory axis. These findings provide insights into the multi-contextual functions of RAD51AP1 within the ALT mechanism and regulation of TERRA.
Assuntos
RNA Longo não Codificante , Homeostase do Telômero , Cromatina/genética , Proteômica , Telômero/genética , Telômero/metabolismo , RNA Longo não Codificante/genética , HomeostaseRESUMO
BACKGROUND: Alternative splicing (AS) plays important roles in transcriptome and proteome diversity. Its dysregulation has a close affiliation with oncogenic processes. This study aimed to evaluate AS-based biomarkers by machine learning algorithms for lung squamous cell carcinoma (LUSC) patients. METHOD: The Cancer Genome Atlas (TCGA) database and TCGA SpliceSeq database were utilized. After data composition balancing, Boruta feature selection and Spearman correlation analysis were used for differentially expressed AS events. Random forests and a nested fivefold cross-validation were applied for lymph node metastasis (LNM) classifier building. Random survival forest combined with Cox regression model was performed for a prognostic model, based on which a nomogram was developed. Functional enrichment analysis and Spearman correlation analysis were also conducted to explore underlying mechanisms. The expression of some switch-involved AS events along with parent genes was verified by qRT-PCR with 20 pairs of normal and LUSC tissues. RESULTS: We found 16 pairs of splicing events from same parent genes which were strongly related to the splicing switch (intrapair correlation coefficient = - 1). Next, we built a reliable LNM classifier based on 13 AS events as well as a nice prognostic model, in which switched AS events behaved prominently. The qRT-PCR presented consistent results with previous bioinformatics analysis, and some AS events like ITIH5-10715-AT and QKI-78404-AT showed remarkable detection efficiency for LUSC. CONCLUSION: AS events, especially switched ones from the same parent genes, could provide new insights into the molecular diagnosis and therapeutic drug design of LUSC.
RESUMO
BACKGROUND: Alternative splicing (AS) plays critical roles in generating protein diversity and complexity. Dysregulation of AS underlies the initiation and progression of tumors. Machine learning approaches have emerged as efficient tools to identify promising biomarkers. It is meaningful to explore pivotal AS events (ASEs) to deepen understanding and improve prognostic assessments of lung adenocarcinoma (LUAD) via machine learning algorithms. METHOD: RNA sequencing data and AS data were extracted from The Cancer Genome Atlas (TCGA) database and TCGA SpliceSeq database. Using several machine learning methods, we identified 24 pairs of LUAD-related ASEs implicated in splicing switches and a random forest-based classifiers for identifying lymph node metastasis (LNM) consisting of 12 ASEs. Furthermore, we identified key prognosis-related ASEs and established a 16-ASE-based prognostic model to predict overall survival for LUAD patients using Cox regression model, random survival forest analysis, and forward selection model. Bioinformatics analyses were also applied to identify underlying mechanisms and associated upstream splicing factors (SFs). RESULTS: Each pair of ASEs was spliced from the same parent gene, and exhibited perfect inverse intrapair correlation (correlation coefficient = - 1). The 12-ASE-based classifier showed robust ability to evaluate LNM status of LUAD patients with the area under the receiver operating characteristic (ROC) curve (AUC) more than 0.7 in fivefold cross-validation. The prognostic model performed well at 1, 3, 5, and 10 years in both the training cohort and internal test cohort. Univariate and multivariate Cox regression indicated the prognostic model could be used as an independent prognostic factor for patients with LUAD. Further analysis revealed correlations between the prognostic model and American Joint Committee on Cancer stage, T stage, N stage, and living status. The splicing network constructed of survival-related SFs and ASEs depicts regulatory relationships between them. CONCLUSION: In summary, our study provides insight into LUAD researches and managements based on these AS biomarkers.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Processamento Alternativo/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Aprendizado de Máquina , PrognósticoRESUMO
BACKGROUND: Bronchoscopy is applied broadly in the diagnosis and treatment of pulmonary diseases. Over the past few decades, an increasing number of studies about bronchoscopy have been published. However, little is known about their qualities and characteristics. METHODS: All of the databases in Web of Science (including the Web of Science Core Collection, BIOSIS Citation Index, KCI-Korean Journal Database, MEDLINE, Russian Science Citation Index, and SciELO Citation Index) were utilized to identify articles published from 1990 to 2020. The top 100 most cited articles about bronchoscopy were selected for degree centrality analysis and analyses regarding publication time, total citation number, the citation density, time-related flux, first author, published journal, geographic origin, and research theme. RESULTS: The selected articles were published mainly in the 2000s and 1990s. Citations per article ranged from 731 to 196. The leading country was the USA, followed by the United Kingdom. The most frequently studied themes were bronchoalveolar lavage (BAL) fluid and biopsy. The degree centrality analysis connoted that "BAL, inflammation, diagnosis" had a high degree of centrality in the 1990s, while "diagnosis, BAL, biopsy, prospective" took centre stage in the 2000s. CONCLUSIONS: The time, area, and theme distribution of the 100 most cited articles on bronchoscopy have been thoroughly analyzed. It is noticeable that researches based on BAL and endobronchial or transbronchial biopsies currently plays a major role.
Assuntos
Bibliometria , Broncoscopia/métodos , Bases de Dados Factuais , Publicações Periódicas como Assunto , Humanos , InternacionalidadeRESUMO
Fanconi anemia (FA) is characterized by congenital abnormalities, bone marrow failure, and cancer susceptibility. The central FA protein complex FANCI/FANCD2 (ID2) is activated by monoubiquitination and recruits DNA repair proteins for interstrand crosslink (ICL) repair and replication fork protection. Defects in the FA pathway lead to R-loop accumulation, which contributes to genomic instability. Here, we report that the splicing factor SRSF1 and FANCD2 interact physically and act together to suppress R-loop formation via mRNA export regulation. We show that SRSF1 stimulates FANCD2 monoubiquitination in an RNA-dependent fashion. In turn, FANCD2 monoubiquitination proves crucial for the assembly of the SRSF1-NXF1 nuclear export complex and mRNA export. Importantly, several SRSF1 cancer-associated mutants fail to interact with FANCD2, leading to inefficient FANCD2 monoubiquitination, decreased mRNA export, and R-loop accumulation. We propose a model wherein SRSF1 and FANCD2 interaction links DNA damage response to the avoidance of pathogenic R-loops via regulation of mRNA export.
Assuntos
Anemia de Fanconi , Neoplasias , Humanos , Estruturas R-Loop , Transporte Ativo do Núcleo Celular , Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Ubiquitinação , Reparo do DNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Dano ao DNA , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismoRESUMO
Exploring early detection methods through comprehensive evaluation of DNA methylation for lung squamous cell carcinoma (LUSC) patients is of great significance. By using different machine learning algorithms for feature selection and model construction based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, five methylation biomarkers in LUSC (along with mapped genes) were identified including cg14823851 (TBX4), cg02772121 (TRIM15), cg10424681 (C6orf201), cg12910906 (ARHGEF4), and cg20181079 (OR4D11), achieving extremely high sensitivity and specificity in distinguishing LUSC from normal samples in independent cohorts. Pyrosequencing assay verified DNA methylation levels, meanwhile qRT-PCR and immunohistochemistry results presented their accordant methylation-related gene expression statuses in paired LUSC and normal lung tissues. The five methylation-based biomarkers proposed in this study have great potential for the diagnosis of LUSC and could guide studies in methylation-regulated tumor development and progression.
RESUMO
Emerging research indicates that circRNAs serve a crucial role in occurrence and development of cancers. This study aimed to uncover the biological role of hsa_circ_0000519 in the progression of LUAD (lung adenocarcinoma). hsa_circ_0000519 was identified by bioinformatic analysis, and its differential expression was validated in LUAD tissues and cell lines. CCK8, colony formation, wound healing, transwell assays, and xenograft tumor models were used to observe the biological functions of hsa_circ_0000519. FISH, RIP, dual luciferase reporter assays, and recovery experiments were implemented to explore the underlying mechanisms of hsa_circ_0000519. hsa_circ_0000519 was significantly upregulated in LUAD tissues and cell lines. The expression of hsa_circ_0000519 was positively correlated with T grade and TNM stage in patients with LUAD. Downregulation of hsa_circ_0000519 remarkably reduced cell proliferation, migration, invasion in vitro, and tumor growth in vivo. Mechanistic investigation demonstrated that hsa_circ_0000519 directly sponged hsa-miR-1296-5p to reduce its repressive impact on DARS as well as activate the PI3K/AKT/mTOR signaling pathway. The malignant phenotypes of LUAD cells induced by upregulation of hsa_circ_0000519 could be rescued by hsa-miR-1296-5p overexpression or knockdown of DARS. In conclusion, hsa_circ_0000519 promotes LUAD progression through the hsa-miR-1296-5p/DARS axis and may be expected as a novel biomarker and therapeutic for LUAD.
RESUMO
Central to homologous recombination (HR) is the assembly of Rad51 recombinase on single-strand DNA (ssDNA), forming the Rad51-ssDNA filament. How the Rad51 filament is efficiently established and sustained remains partially understood. Here, we find that the yeast ubiquitin ligase Bre1 and its human homolog RNF20, a tumor suppressor, function as recombination mediators, promoting Rad51 filament formation and subsequent reactions via multiple mechanisms independent of their ligase activities. We show that Bre1/RNF20 interacts with Rad51, directs Rad51 to ssDNA, and facilitates Rad51-ssDNA filament assembly and strand exchange in vitro. In parallel, Bre1/RNF20 interacts with the Srs2 or FBH1 helicase to counteract their disrupting effect on the Rad51 filament. We demonstrate that the above functions of Bre1/RNF20 contribute to HR repair in cells in a manner additive to the mediator protein Rad52 in yeast or BRCA2 in human. Thus, Bre1/RNF20 provides an additional layer of mechanism to directly control Rad51 filament dynamics.
Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , DNA Helicases/genética , DNA Helicases/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Recombinação Homóloga , Ligases/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Accumulation of vimentin is the core event in epithelial-mesenchymal transition (EMT). Post-translational modifications have been widely reported to play crucial roles in imparting different properties and functions to vimentin. Here, a novel modification of vimentin, acetylated at Lys104 (vimentin-K104Ac) is identified, which is stable in lung adenocarcinoma (LUAD) cells. Mechanistically, NACHT, LRR, and PYD domain-containing protein 11 (NLRP11), a regulator of the inflammatory response, bind to vimentin and promote vimentin-K104Ac expression, which is highly expressed in the early stages of LUAD and frequently appears in vimentin-positive LUAD tissues. In addition, it is observed that an acetyltransferase, lysine acetyltransferase 7 (KAT7), which binds to NLRP11 and vimentin, directly mediates the acetylation of vimentin at Lys104 and that the cytoplasmic localization of KAT7 can be induced by NLRP11. Malignant promotion mediated by transfection with vimentin-K104Q is noticeably greater than that mediated by transfection with vimentin-WT. Further, suppressing the effects of NLRP11 and KAT7 on vimentin noticeably inhibited the malignant behavior of vimentin-positive LUAD in vivo and in vitro. In summary, these findings have established a relationship between inflammation and EMT, which is reflected via KAT7-mediated acetylation of vimentin at Lys104 dependent on NLRP11.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Histonas/metabolismo , Vimentina/metabolismo , Lisina/metabolismo , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Histona AcetiltransferasesRESUMO
DNA lesions induced by alkylating agents are repaired by two canonical mechanisms, base excision repair dependent on poly(ADP) ribose polymerase 1 (PARP1) and the other mediated by O6-methylguanine (O6meG)-DNA methyltransferase (MGMT) in a single-step catalysis of alkyl-group removal. O6meG is the most cytotoxic and mutagenic lesion among the methyl adducts induced by alkylating agents. Although it can accomplish the dealkylation reaction all by itself as a single protein without associating with other repair proteins, evidence is accumulating that MGMT can form complexes with repair proteins and is highly regulated by a variety of post-translational modifications, such as phosphorylation, ubiquitination, and others. Here, we show that PARP1 and MGMT proteins interact directly in a non-catalytic manner, that MGMT is subject to PARylation by PARP1 after DNA damage, and that the O6meG repair is enhanced upon MGMT PARylation. We provide the first evidence for the direct DNA-independent PARP1-MGMT interaction. Further, PARP1 and MGMT proteins also interact via PARylation of MGMT leading to formation of a novel DNA damage inducible PARP1-MGMT protein complex. This catalytic interaction activates O6meG repair underpinning the functional crosstalk between base excision and MGMT-mediated DNA repair mechanisms. Furthermore, clinically relevant 'chronic' temozolomide exposure induced PARylation of MGMT and increased binding of PARP1 and MGMT to chromatin in cells. Thus, we provide the first mechanistic description of physical interaction between PARP1 and MGMT and their functional cooperation through PARylation for activation of O6meG repair. Hence, the PARP1-MGMT protein complex could be targeted for the development of advanced and more effective cancer therapeutics, particularly for cancers sensitive to PARP1 and MGMT inhibition.
Assuntos
O(6)-Metilguanina-DNA Metiltransferase , Ribose , Difosfato de Adenosina , Alquilantes/toxicidade , Cromatina , DNA , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Guanina/análogos & derivados , Humanos , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Proteínas Supressoras de Tumor/genéticaRESUMO
According to mounting evidence, long noncoding RNAs (lncRNAs) play a vital role in regulated cell death (RCD). A potential strategy for cancer therapy involves triggering ferroptosis, a novel form of RCD. Although it is thought to be an autophagy-dependent process, it is still unclear how the two processes interact. This study characterized a long intergenic noncoding RNA, LINC00551, expressed at a low level in lung adenocarcinoma (LUAD) and some other cancers. Overexpression of LINC00551 suppresses cell viability while promoting autophagy and RSL-3-induced ferroptosis in LUAD cells. LINC00551 acts as a competing endogenous RNA (ceRNA) and binds with miR-4328 which up-regulates the target DNA damage-inducible transcript 4 (DDIT4). DDIT4 inhibits the activity of mTOR, promotes LUAD autophagy, and then promotes the ferroptosis of LUAD cells in an autophagy-dependent manner. This study provided an insight into the molecular mechanism regulating ferroptosis and highlighted LINC00551 as a potential therapeutic target for LUAD.
Assuntos
Adenocarcinoma , Ferroptose , Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNAs/genética , Ferroptose/genética , Neoplasias Pulmonares/tratamento farmacológico , Proliferação de Células/genética , Autofagia/genética , Adenocarcinoma/genética , Pulmão/metabolismo , Fatores de TranscriçãoRESUMO
Screening for early-stage lung cancer with low-dose computed tomography is recommended for high-risk populations; consequently, the incidence of pure ground-glass opacity (pGGO) is increasing. Ground-glass opacity (GGO) is considered the appearance of early lung cancer, and there remains an unmet clinical need to understand the pathology of small GGO (<1 cm in diameter). The objective of this study was to use the transcriptome profiling of pGGO specimens <1 cm in diameter to construct a pGGO-related gene risk signature to predict the prognosis of early-stage lung adenocarcinoma (LUAD) and explore the immune microenvironment of GGO. pGGO-related differentially expressed genes (DEGs) were screened to identify prognostic marker genes with two machine learning algorithms. A 15-gene risk signature was constructed from the DEGs that were shared between the algorithms. Risk scores were calculated using the regression coefficients for the pGGO-related DEGs. Patients with Stage I/II LUAD or Stage IA LUAD and high-risk scores had a worse prognosis than patients with low-risk scores. The prognosis of high-risk patients with Stage IA LUAD was almost identical to that of patients with Stage II LUAD, suggesting that treatment strategies for patients with Stage II LUAD may be beneficial in high-risk patients with Stage IA LUAD. pGGO-related DEGs were mainly enriched in immune-related pathways. Patients with high-risk scores and high tumor mutation burden had a worse prognosis and may benefit from immunotherapy. A nomogram was constructed to facilitate the clinical application of the 15-gene risk signature. Receiver operating characteristic curves and decision curve analysis validated the predictive ability of the nomogram in patients with Stage I LUAD in the TCGA-LUAD cohort and GEO datasets.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Aprendizado de Máquina , Microambiente Tumoral/genéticaRESUMO
BACKGROUND: Esophageal carcinogenesis involves in alterations of DNA methylation and gene transcription. This study profiled genomic DNA methylome vs. gene expression using transcriptome data on esophageal adenocarcinoma (EAC) tissues from the online databases in order to identify methylation biomarkers in EAC early diagnosis. MATERIALS AND METHODS: The DNA methylome and transcriptome data were downloaded from the UCSC Xena, Gene Expression Omnibus (GEO), and The Cancer Genome Atlas (TCGA) databases and then bioinformatically analyzed for the differentially methylated positions (DMPs) vs. gene expression between EAC and normal tissues. The highly methylated DMPs vs. reduced gene expression in EAC were selected and then stratified with those of the corresponding normal blood samples and other common human cancers to construct an EAC-specific diagnostic model. The usefulness of this model was further verified in other three GEO datasets of EAC tissues. RESULT: A total of 841 DMPs were associated with expression of 320 genes, some of which were aberrantly methylated in EAC tissues. Further analysis showed that four (cg07589773, cg10474350, cg13011388 and cg15208375 mapped to gene IKZF1, HOXA7, EFS and TSHZ3, respectively) of these 841 DMPs could form and establish a diagnostic model after stratified them with the corresponding normal blood samples and other common human cancers. The data were further validated in other three GEO datasets on EAC tissues in early EAC diagnosis. CONCLUSION: This study revealed a diagnostic model of four genes methylation to diagnose EAC early. Further study will confirm the usefulness of this model in a prospective EAC cases.
RESUMO
BACKGROUND: Tumor mutation burden (TMB) levels are associated with immune infiltrates in the tumor microenvironment and can modulate the responses to immune checkpoint inhibitors (ICIs) in lung adenocarcinoma (LUAD) patients. This study aimed at exploring the potential role of a signature of genes associated with TMB and immune infiltrates and the relevant nomogram in the prognosis of LUAD. MATERIALS AND METHODS: The TMB levels in LUAD patients in the Cancer Genome Atlas (TCGA) were analyzed. The differentially expressed genes (DEGs) between the higher- and lower-TMB subgroups were functionally analyzed. The immune-related DEGs and their relationship with immune infiltrates in the tumor environment between two subgroups were analyzed. Nine immune-related DEGs were used to generate a TMB-related immune signature. The sensitivity to immunotherapy in TCGA-LUAD patients was analyzed by immunophenotypic scores (IPS). Subsequently, a nomogram was generated using tumor-related parameters and the signature score. The signature or nomogram values in predicting overall survival (OS) were evaluated and validated in LUAD patients in the GSE30219 and GSE72094. RESULT: There were 468 DEGs between the higher and lower-TMB subgroups of LUAD patients. The TMB levels were associated positively with the number of immune infiltrates in LUAD patients. Nine DEGs were related to immune infiltrates in the tumor environment. The higher signature scores (high-risk) were associated with poor prognosis of LUAD in the TCGA, which was validated in LUAD patients of the GSE30219 and GSE72094 datasets. Interestingly, the patients in the high-risk group had higher PD-L1 expression in their tumors and the risk scores in LUAD patients. The IPS of LUAD patients in the high-risk group were predicted to benefit from immunotherapy. Finally, the nomogram had high AUC values in predicting the OS of LUAD patients. CONCLUSION: The TMB-related immune signature or nomogram is valuable for the prognosis of LUAD patients and evaluating their responses to ICIs. These relevant genes may participate into the pathogenesis, ICIs, and drug resistance of LUAD.
Assuntos
Adenocarcinoma de Pulmão/mortalidade , Biomarcadores Tumorais/genética , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/mortalidade , Nomogramas , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Idoso , Antígeno B7-H1/antagonistas & inibidores , Estudos de Coortes , Análise Mutacional de DNA , Conjuntos de Dados como Assunto , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , Medição de Risco/métodos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologiaRESUMO
BACKGROUND: Ferroptosis is a novel form of programmed cell death characterized by the excessive accumulation of intracellular iron and an increase in reactive oxygen species. Emerging studies have shown that ferroptosis plays a vital role in the progression of lung adenocarcinoma, but the effect of ferroptosis-related genes on prognosis has been poorly studied. The purpose of this study was to explore the prognostic value of ferroptosis-related genes. METHODS: Lung adenocarcinoma samples were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The least absolute shrinkage and selection operator (LASSO) Cox regression algorithm was used to establish a predictive signature for risk stratification. Kaplan-Meier (K-M) survival analysis and receiver operating characteristic (ROC) curve analysis were conducted to evaluate the signature. We further explored the potential correlation between the risk score model and tumor immune status. RESULTS: A 15-gene ferroptosis signature was constructed to classify patients into different risk groups. The overall survival (OS) of patients in the high-risk group was significantly shorter than that of patients in the low-risk group. The signature could predict OS independent of other risk factors. Single-sample gene set enrichment analysis (ssGSEA) identified the difference in immune status between the two groups. Patients in the high-risk group had stronger immune suppression, especially in the antigen presentation process. CONCLUSIONS: The 15-gene ferroptosis signature identified in this study could be a potential biomarker for prognosis prediction in lung adenocarcinoma. Targeting ferroptosis might be a promising therapeutic alternative for lung adenocarcinoma.
RESUMO
Aberrant N6-methyladenosine (m6A) RNA methylation regulatory genes and related gene alternative splicing (AS) could be used to predict the prognosis of non-small cell lung carcinoma. This study focused on 13 m6A regulatory genes (METTL3, METTL14, WTAP, KIAA1429, RBM15, ZC3H13, YTHDC1, YTHDC2, YTHDF1, YTHDF2, HNRNPC, FTO, and ALKBH5) and expression profiles in TCGA-LUAD (n = 504) and TCGA-LUSC (n = 479) datasets from the Cancer Genome Atlas database. The data were downloaded and bioinformatically and statistically analyzed, including the gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. There were 43,948 mRNA splicing events in lung adenocarcinoma (LUAD) and 46,020 in lung squamous cell carcinoma (LUSC), and the data suggested that m6A regulators could regulate mRNA splicing. Differential HNRNPC and RBM15 expression was associated with overall survival (OS) of LUAD and HNRNPC and METTL3 expression with the OS of LUSC patients. Furthermore, the non-small cell lung cancer prognosis-related AS events signature was constructed and divided patients into high- vs. low-risk groups using seven and 14 AS genes in LUAD and LUSC, respectively. The LUAD risk signature was associated with gender and T, N, and TNM stages, but the LUSC risk signature was not associated with any clinical features. In addition, the risk signature and TNM stage were independent prognostic predictors in LUAD and the risk signature and T stage were independent prognostic predictors in LUSC after the multivariate Cox regression and receiver operating characteristic analyses. In conclusion, this study revealed the AS prognostic signature in the prediction of LUAD and LUSC prognosis.
RESUMO
Background: Emerging scientific evidence has shown that long non-coding RNAs (lncRNAs) exert critical roles in genomic instability (GI), which is considered a hallmark of cancer. To date, the prognostic value of GI-associated lncRNAs (GI-lncRNAs) remains largely unexplored in lung adenocarcinoma (LUAC). The aims of this study were to identify GI-lncRNAs associated with the survival of LUAC patients, and to develop a novel GI-lncRNA-based prognostic model (GI-lncRNA model) for LUAC. Methods: Clinicopathological data of LUAC patients, and their expression profiles of lncRNAs and somatic mutations were obtained from The Cancer Genome Atlas database. Pearson correlation analysis was conducted to identify the co-expressed mRNAs of GI-lncRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted to determine the main biological function and molecular pathways of the differentially expressed GI-lncRNAs. Univariate and multivariate Cox proportional hazard regression analyses were performed to identify GI-lncRNAs significantly related to overall survival (OS) for construction of the GI-lncRNA model. Kaplan-Meier survival analysis and receiver operating characteristic curve analysis were performed to evaluate the predictive accuracy. The performance of the newly developed GI-lncRNA model was compared with the recently published lncRNA-based prognostic index models. Results: A total of 19 GI-lncRNAs were found to be significantly associated with OS, of which 9 were identified by multivariate analysis to construct the GI-lncRNA model. Notably, the GI-lncRNA model showed a prognostic value independent of key clinical characteristics. Further performance evaluation indicated that the area under the curve (AUC) of the GI-lncRNA model was 0.771, which was greater than that of the TP53 mutation status and three existing lncRNA-based models in predicting the prognosis of patients with LUAC. In addition, the GI-lncRNA model was highly correlated with programed death ligand 1 (PD-L1) expression and tumor mutational burden in immunotherapy for LUAC. Conclusion: The GI-lncRNA model was established and its performance was found to be superior to existing lncRNA-based models. As such, the GI-lncRNA model holds promise as a more accurate prognostic tool for the prediction of prognosis and response to immunotherapy in patients with LUAC.
RESUMO
BACKGROUND: Lung ground-glass opacities (GGOs) are an early manifestation of lung adenocarcinoma. It is of great value to study the changes in the immune microenvironment of GGO to elucidate the occurrence and evolution of early lung adenocarcinoma. Although the changes of IL-6 and NK cells in lung adenocarcinoma have caught global attention, we have little appreciation for how IL-6 and NK cells in the lung GGO affect the progression of early lung adenocarcinoma. METHODS: We analyzed the RNA sequencing data of surgical specimens from 21 patients with GGO-featured primary lung adenocarcinoma and verified the changes in the expression of IL-6 and other important immune molecules in the TCGA and GEO databases. Next, we used flow cytometry to detect the protein expression levels of important Th1/Th2 cytokines in GGO and normal lung tissues and the changes in the composition ratio of tumor infiltrating lymphocytes (TILs). Then, we analyzed the effect of IL-6 on NK cells through organoid culture and immunofluorescence. Finally, we explored the changes of related molecules and pathway might be involved. RESULTS: IL-6 may play an important role in the tumor microenvironment of early lung adenocarcinoma. Further research confirmed that the decrease of IL-6 in GGO tissue is consistent with the changes in NK cells, and there seems to be a correlation between these two phenomena. CONCLUSION: The IL-6 expression status and NK cell levels of early lung adenocarcinoma as GGO are significantly reduced, and the stimulation of IL-6 can up-regulate or activate NK cells in GGO, providing new insights into the diagnosis and pathogenesis of early lung cancer.
RESUMO
BACKGROUND: DNA hypermethylation is a key event in oncogenesis and may act as a biomarker for the early detection of lung adenocarcinoma (LUAD). Here, we aimed to identify LUAD-specific methylation diagnostic biomarkers and explored potential mechanisms using data mining. METHODS: Using The Cancer Genome Atlas (TCGA) LUAD and GSE83842 datasets, we identified overlapping common differentially methylated positions (DMPs) with negative correlations between methylation and gene expression. Methylation profiles of the TCGA LUAD samples were compared with 185 blood samples and 370 lung squamous cell carcinoma (LUSC) samples to build a logistic regression model. Diagnosis performance was evaluated using an independent dataset. RESULTS: 160 genes were aberrantly methylated in LUAD since stage I; these genes were enriched in DNA-binding transcription factor activity, multiple embryonic development processes, and cell signaling. A diagnostic prediction model based on 10 CpG could distinguish LUAD from LUSC (area under the curve: 0.943). The derived model showed higher sensitivity and specificity than the two existing models. The homeobox A1 gene exhibited significantly higher methylation levels in LUAD than in 10 other cancers, showing potential as a LUAD-specific diagnostic biomarker. CONCLUSIONS: Our findings provided insights into DNA methylation alterations in LUAD and established LUAD-specific diagnostic biomarkers.
Assuntos
Adenocarcinoma de Pulmão/diagnóstico , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma de Células Escamosas/diagnóstico , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/diagnóstico , Adenocarcinoma de Pulmão/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Estadiamento de Neoplasias , Taxa de SobrevidaRESUMO
Abnormal DNA methylation persists throughout carcinogenesis and cancer development. Hence, gene promoter methylation may act as a prognostic tool and provide new potential therapeutic targets for patients with lung adenocarcinoma (LUAD). In this study, to explore prognostic methylation signature, data regarding DNA methylation and RNA-seq, and clinical data of patients with LUAD from the Cancer Genome Atlas database (TCGA) were downloaded. After data preprocessing, the methylation data were divided into training (N = 405) and test sets (N = 62). Then, patients in the training set were assigned to five subgroups based on their different methylation levels using the consensus clustering method. We comprehensively analyzed the survival information, methylation levels, and clinical variables, including American Joint Committee on Cancer (AJCC) stage, tumor-node-metastasis (TNM) staging, age, smoking history, and gender of these five groups. Subsequently, we identified a 16-CpG prognostic signature and constructed a prognostic model, which was verified in the test set. Further analyses showed stable prognostic performance in the stratified cohorts. In conclusion, the new predictive DNA methylation signature proposed in this study may be used as an independent biomarker to assess the overall survival of LUAD patients and provide bioinformatics information for development of targeted therapy.