Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 553(7686): 68-72, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29258293

RESUMO

Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications. The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO3. This prototypical strongly correlated quantum material is stable in salt water, does not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures.


Assuntos
Compostos de Cálcio/química , Eletricidade , Níquel/química , Compostos Organometálicos/química , Óxidos/química , Cloreto de Sódio/química , Titânio/química , Água/química , Organismos Aquáticos , Concentração de Íons de Hidrogênio , Transição de Fase , Prótons , Navios , Síncrotrons , Temperatura
2.
Proc Natl Acad Sci U S A ; 118(34)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34413195

RESUMO

During the last decade, translational and rotational symmetry-breaking phases-density wave order and electronic nematicity-have been established as generic and distinct features of many correlated electron systems, including pnictide and cuprate superconductors. However, in cuprates, the relationship between these electronic symmetry-breaking phases and the enigmatic pseudogap phase remains unclear. Here, we employ resonant X-ray scattering in a cuprate high-temperature superconductor [Formula: see text] (Nd-LSCO) to navigate the cuprate phase diagram, probing the relationship between electronic nematicity of the Cu 3d orbitals, charge order, and the pseudogap phase as a function of doping. We find evidence for a considerable decrease in electronic nematicity beyond the pseudogap phase, either by raising the temperature through the pseudogap onset temperature T* or increasing doping through the pseudogap critical point, p*. These results establish a clear link between electronic nematicity, the pseudogap, and its associated quantum criticality in overdoped cuprates. Our findings anticipate that electronic nematicity may play a larger role in understanding the cuprate phase diagram than previously recognized, possibly having a crucial role in the phenomenology of the pseudogap phase.

3.
Proc Natl Acad Sci U S A ; 116(44): 21992-21997, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611403

RESUMO

Point defects, such as oxygen vacancies, control the physical properties of complex oxides, relevant in active areas of research from superconductivity to resistive memory to catalysis. In most oxide semiconductors, electrons that are associated with oxygen vacancies occupy the conduction band, leading to an increase in the electrical conductivity. Here we demonstrate, in contrast, that in the correlated-electron perovskite rare-earth nickelates, RNiO3 (R is a rare-earth element such as Sm or Nd), electrons associated with oxygen vacancies strongly localize, leading to a dramatic decrease in the electrical conductivity by several orders of magnitude. This unusual behavior is found to stem from the combination of crystal field splitting and filling-controlled Mott-Hubbard electron-electron correlations in the Ni 3d orbitals. Furthermore, we show the distribution of oxygen vacancies in NdNiO3 can be controlled via an electric field, leading to analog resistance switching behavior. This study demonstrates the potential of nickelates as testbeds to better understand emergent physics in oxide heterostructures as well as candidate systems in the emerging fields of artificial intelligence.

4.
Phys Rev Lett ; 126(18): 187602, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018782

RESUMO

Antiferromagnetic order is a common and robust ground state in the parent (undoped) phase of several strongly correlated electron systems. The progressive weakening of antiferromagnetic correlations upon doping paves the way for a variety of emergent many-electron phenomena including unconventional superconductivity, colossal magnetoresistance, and collective charge-spin-orbital ordering. In this study, we explored the use of oxygen stoichiometry as an alternative pathway to modify the coupled magnetic and electronic ground state in the family of rare earth nickelates (RENiO_{3-x}). Using a combination of x-ray spectroscopy and resonant soft x-ray magnetic scattering, we find that, while oxygen vacancies rapidly alter the electronic configuration within the Ni and O orbital manifolds, antiferromagnetic order is remarkably robust to substantial levels of carrier doping, only to suddenly collapse beyond 0.21 e^{-}/Ni without an accompanying structural transition. Our work demonstrates that ordered magnetism in RENiO_{3-x} is mostly insensitive to carrier doping up to significant levels unseen in other transition-metal oxides. The sudden collapse of ordered magnetism upon oxygen removal may provide a new mechanism for solid-state magnetoionic switching and new applications in antiferromagnetic spintronics.

5.
Nano Lett ; 17(11): 7062-7066, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29053919

RESUMO

Polar discontinuities and redox reactions provide alternative paths to create two-dimensional electron liquids (2DELs) at oxide interfaces. Herein, we report high mobility 2DELs at interfaces involving SrTiO3 (STO) achieved using polar La7/8Sr1/8MnO3 (LSMO) buffer layers to manipulate both polarities and redox reactions from disordered overlayers grown at room temperature. Using resonant X-ray reflectometry experiments, we quantify redox reactions from oxide overlayers on STO as well as polarity induced electronic reconstruction at epitaxial LSMO/STO interfaces. The analysis reveals how these effects can be combined in a STO/LSMO/disordered film trilayer system to yield high mobility modulation doped 2DELs, where the buffer layer undergoes a partial transformation from perovskite to brownmillerite structure. This uncovered interplay between polar discontinuities and redox reactions via buffer layers provides a new approach for the design of functional oxide interfaces.

6.
Nano Lett ; 12(9): 4966-70, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22889011

RESUMO

Epitaxial strain imposed in complex oxide thin films by heteroepitaxy is recognized as a powerful tool for identifying new properties and exploring the vast potential of materials performance. A particular example is LaCoO(3), a zero spin, nonmagnetic material in the bulk, whose strong ferromagnetism in a thin film remains enigmatic despite a decade of intense research. Here, we use scanning transmission electron microscopy complemented by X-ray and optical spectroscopy to study LaCoO(3) epitaxial thin films under different strain states. We observed an unconventional strain relaxation behavior resulting in stripe-like, lattice modulated patterns, which did not involve uncontrolled misfit dislocations or other defects. The modulation entails the formation of ferromagnetically ordered sheets comprising intermediate or high spin Co(3+), thus offering an unambiguous description for the exotic magnetism found in epitaxially strained LaCoO(3) films. This observation provides a novel route to tailoring the electronic and magnetic properties of functional oxide heterostructures.


Assuntos
Cobalto/química , Lantânio/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Óxidos/química , Módulo de Elasticidade , Campos Magnéticos , Teste de Materiais , Tamanho da Partícula
7.
Sci Adv ; 7(2)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523988

RESUMO

Titanium monoxide (TiO), an important member of the rock salt 3d transition-metal monoxides, has not been studied in the stoichiometric single-crystal form. It has been challenging to prepare stoichiometric TiO due to the highly reactive Ti2+ We adapt a closely lattice-matched MgO(001) substrate and report the successful growth of single-crystalline TiO(001) film using molecular beam epitaxy. This enables a first-time study of stoichiometric TiO thin films, showing that TiO is metal but in proximity to Mott insulating state. We observe a transition to the superconducting phase below 0.5 K close to that of Ti metal. Density functional theory (DFT) and a DFT-based tight-binding model demonstrate the extreme importance of direct Ti-Ti bonding in TiO, suggesting that similar superconductivity exists in TiO and Ti metal. Our work introduces the new concept that TiO behaves more similar to its metal counterpart, distinguishing it from other 3d transition-metal monoxides.

8.
Sci Adv ; 2(10): e1601086, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27757422

RESUMO

Resonant x-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasi-particle interference signals observed with a scanning tunneling microscope (STM), can lead to scattering peaks in RXS experiments. The possibility that quasi-particle properties can be probed in RXS measurements opens up a new avenue to study the bulk band structure of materials with the orbital and element selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn5 (M = Co, Rh). Temperature- and doping-dependent RXS measurements at the Ce-M4 edge show a broad scattering enhancement that correlates with the appearance of heavy f-electron bands in these compounds. The scattering enhancement is consistent with the measured quasi-particle interference signal in the STM measurements, indicating that the quasi-particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique.

9.
Sci Adv ; 2(8): e1600782, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27536726

RESUMO

Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2-x Ce x CuO4 and Nd2-x Ce x CuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2-x Ce x CuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates.


Assuntos
Condutividade Elétrica , Elétrons , Modelos Teóricos , Temperatura
10.
Science ; 347(6219): 282-5, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25593186

RESUMO

In cuprate high-temperature superconductors, an antiferromagnetic Mott insulating state can be destabilized toward unconventional superconductivity by either hole or electron doping. In hole-doped (p-type) cuprates, a charge ordering (CO) instability competes with superconductivity inside the pseudogap state. We report resonant x-ray scattering measurements that demonstrate the presence of charge ordering in the n-type cuprate Nd(2-x)Ce(x)CuO4 near optimal doping. We find that the CO in Nd(2-x)Ce(x)CuO4 occurs with similar periodicity, and along the same direction, as in p-type cuprates. However, in contrast to the latter, the CO onset in Nd(2-x)Ce(x)CuO4 is higher than the pseudogap temperature, and is in the temperature range where antiferromagnetic fluctuations are first detected. Our discovery opens a parallel path to the study of CO and its relationship to antiferromagnetism and superconductivity.

11.
Adv Mater ; 26(38): 6554-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25103570

RESUMO

The electronic phase behavior and functionality of interfaces and surfaces in complex materials are strongly correlated to chemical composition profiles, stoichiometry and intermixing. Here a novel analysis scheme for resonant X-ray reflectivity maps is introduced to determine such profiles, which is element specific and non-destructive, and which exhibits atomic-layer resolution and a probing depth of hundreds of nanometers.


Assuntos
Nanoestruturas/química , Análise Espectral , Fenômenos Ópticos , Raios X
12.
Phys Rev Lett ; 94(17): 176101, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15904313

RESUMO

SrTiO3 thin films were used as a model system to study the effects of strain and epitaxial constraint on structural phase transitions of perovskite films. The basic phenomena revealed will apply to a variety of important structural transitions including the ferroelectric transition. Highly strained SrTiO3 films were grown on different substrates, providing both compressive and tensile strain. The measured strain-temperature phase diagram is qualitatively consistent with theory; however, the increase in the phase transition temperature is much larger than predicted. Because of the epitaxial strain and substrate clamping, the SrTiO3 lattice is tetragonal at all temperatures. The phase transitions involve only changes in internal symmetry. The low temperature phase under tensile strain has a unique structure with orthorhombic Cmcm space group but a tetragonal lattice, an interesting consequence of epitaxial constraint.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA