Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Plant Biotechnol J ; 22(1): 66-81, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38153293

RESUMO

Rye (Secale cereale), a valuable relative of wheat, contains abundant powdery mildew resistance (Pm) genes. Using physical mapping, transcriptome sequencing, barley stripe mosaic virus-induced gene silencing, ethyl methane sulfonate mutagenesis, and stable transformation, we isolated and validated two coiled-coil, nucleotide-binding site and leucine-rich repeat (CC-NBS-LRR) alleles, PmTR1 and PmTR3, located on rye chromosome 6RS from different triticale lines. PmTR1 confers age-related resistance starting from the three-leaf stage, whereas its allele, PmTR3, confers typical all-stage resistance, which may be associated with their differential gene expression patterns. Overexpression in Nicotiana benthamiana showed that the CC, CC-NBS, and CC-LRR fragments of PMTR1 induce cell death, whereas in PMTR3 the CC and full-length fragments perform this function. Luciferase complementation imaging and pull-down assays revealed distinct interaction activities between the CC and NBS fragments. Our study elucidates two novel rye-derived Pm genes and their derivative germplasm resources and provides novel insights into the mechanism of age-related resistance, which can aid the improvement of resistance against wheat powdery mildew.


Assuntos
Ascomicetos , Secale , Secale/genética , Resistência à Doença/genética , Triticum/genética , Proteínas de Repetições Ricas em Leucina , Ascomicetos/fisiologia , Nucleotídeos , Cromossomos de Plantas/genética , Sítios de Ligação , Doenças das Plantas/genética
2.
Ann Bot ; 131(1): 185-198, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35451455

RESUMO

BACKGROUND AND AIMS: Dasypyrum villosum (2n = 2x = 14) harbours potentially beneficial genes for hexaploid and tetraploid wheat improvement. Highly diversified chromosome variation exists among and within accessions due to its open-pollination nature. The wheat-D. villosum T6VS·6AL translocation was widely used in breeding mainly because gene Pm21 in the 6VS segment conferred high and lasting powdery mildew resistance. However, the widespread use of this translocation may narrow the genetic base of wheat. A better solution is to utilize diversified D. villosum accessions as the genetic source for wheat breeding. Analysis of cytological and genetic polymorphisms among D. villosum accessions also provides genetic evolution information on the species. Using cytogenetic and molecular tools we analysed genetic polymorphisms among D. villosum accessions and developed consensus karyotypes to assist the introgression of beneficial genes from D. villosum into wheat. METHODS: A multiplex probe of repeats for FISH, GISH and molecular markers were used to detect chromosome polymorphisms among D. villosum accessions. Polymorphic signal block types, chromosome heterogeneity and heterozygosity, and chromosome polymorphic information content were used in genetic diversity analysis. KEY RESULTS: Consensus karyotypes of D. villosum were developed, and the homoeologous statuses of individual D. villosum chromosomes relative to wheat were determined. Tandem repeat probes of pSc119.2, (GAA)10 and the AFA family produced high-resolution signals and not only showed different signal patterns in D. villosum chromosomes but also revealed the varied distribution of tandem repeats among chromosomes and accessions. A total of 106 polymorphic chromosomes were identified from 13 D. villosum accessions and high levels of chromosomal heterozygosity and heterogeneity were observed. A subset of 56 polymorphic chromosomes was transferred into durum wheat through wide crosses, and seven polymorphic chromosomes are described in two newly developed durum-D. villosum amphidiploids. CONCLUSIONS: Consensus karyotypes of D. villosum and oligonucleotide FISH facilitated identification of polymorphic signal blocks and a high level of chromosomal heterozygosity and heterogeneity among D. villosum accessions, seen in newly developed amphiploids. The abundant genetic diversity of D. villosum and range of alleles, exploitable through interploid crosses, backcrosses and recombination (chromosome engineering), allow introduction of biotic and abiotic stress resistances into wheat, translating into increasing yield, end-use quality and crop sustainability.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Cromossomos de Plantas , Poaceae/genética , Fenótipo
3.
Plant Dis ; 106(8): 2145-2154, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35108069

RESUMO

Powdery mildew is one of the most destructive diseases in wheat production. Identifying novel resistance genes and deploying them in new cultivars is the most effective approach to minimize wheat losses caused by powdery mildew. In this study, wheat breeding line PBDH1607 showed high resistance to powdery mildew at both the seedling and adult plant stages. Genetic analysis of the seedling data demonstrated that the resistance was controlled by a single dominant gene, tentatively designated PmPBDH. The ΔSNP index based on bulked segregant RNA sequencing indicated that PmPBDH was associated with an interval of about 30.8 Mb (713.5 to 744.3 Mb) on chromosome arm 4AL. Using newly developed markers, we mapped PmPBDH to a 3.2-cM interval covering 7.1 Mb (719,055,516 to 726,215,121 bp). This interval differed from those of Pm61 (717,963,176 to 719,260,469 bp), MlIW30 (732,769,506 to 732,790,522 bp), and MlNSF10 (729,275,816 to 731,365,462 bp) reported on the same chromosome arm. PmPBDH also differed from Pm61, MlIW30, and MlNSF10 by its response spectrum, origin, or inheritance mode, suggesting that PmPBDH should be a new Pm gene. In the candidate interval, five genes were found to be associated with PmPBDH via time course gene expression analysis, and thus they are candidate genes of PmPBDH. Six closely linked markers, including two kompetitive allele-specific PCR markers, were confirmed to be applicable for tracking PmPBDH in marker-assisted breeding.


Assuntos
Ascomicetos , Triticum , Ascomicetos/fisiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Genes de Plantas/genética , Marcadores Genéticos , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
4.
Theor Appl Genet ; 134(3): 887-896, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33388886

RESUMO

KEY MESSAGE: PmSESY, a new wheat powdery mildew resistance gene was characterized and genetically mapped to the terminal region of chromosome 1RL of wild rye Secale sylvestre. The genus Secale is an important resource for wheat improvement. The Secale species are usually considered as non-adapted hosts of Blumeria graminis f. sp. tritici (Bgt) that causes wheat powdery mildew. However, as a wild species of cultivated rye, S. sylvestre is rarely studied. Here, we reported that 25 S. sylvestre accessions were susceptible to isolate BgtYZ01, whereas the other five confer effective resistance to all the tested isolates of Bgt. A population was then constructed by crossing the resistant accession SESY-01 with the susceptible accession SESY-11. Genetic analysis showed that the resistance in SESY-01 was controlled by a single dominant gene, temporarily designated as PmSESY. Subsequently, combining bulked segregant RNA-Seq (BSR-Seq) analysis with molecular analysis, PmSESY was mapped into a 1.88 cM genetic interval in the terminus of the long arm of 1R, which was closely flanked by markers Xss06 and Xss09 with genetic distances of 0.87 cM and 1.01 cM, respectively. Comparative mapping demonstrated that the corresponding physical region of the PmSESY locus was about 3.81 Mb in rye cv. Lo7 genome, where 30 disease resistance-related genes were annotated, including five NLR-type disease resistance genes, three kinase family protein genes, three leucine-rich repeat receptor-like protein kinase genes and so on. This study gives a new insight into S. sylvestre that shows divergence in response to Bgt and reports a new powdery mildew resistance gene that has potential to be used for resistance improvement in wheat.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/genética , Secale/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Ligação Genética , Marcadores Genéticos , Doenças das Plantas/microbiologia , Secale/imunologia , Secale/microbiologia
5.
Theor Appl Genet ; 134(1): 53-62, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32915283

RESUMO

KEY MESSAGE: New powdery mildew resistance gene Pm68 was found in the terminal region of chromosome 2BS of Greek durum wheat TRI 1796. The co-segregated molecular markers could be used for MAS. Durum wheat (Triticum turgidum L. var. durum Desf.) is not only an important cereal crop for pasta making, but also a genetic resource for common wheat improvement. In the present study, a Greek durum wheat TRI 1796 was found to confer high resistance to all 22 tested isolates of Blumeria graminis f. sp. tritici (Bgt). Inheritance study on the F1 plants and the F2 population derived from the cross TRI 1796/PI 584832 revealed that the resistance in TRI 1796 was controlled by a single dominant gene, herein designated Pm68. Using the bulked segregant RNA-Seq (BSR-Seq) analysis combined with molecular analysis, Pm68 was mapped to the terminal part of the short arm of chromosome 2B and flanked by markers Xdw04 and Xdw12/Xdw13 with genetic distances of 0.22 cM each. According to the reference genome of durum wheat cv. Svevo, the corresponding physical region spanned the Pm68 locus was about 1.78-Mb, in which a number of disease resistance-related genes were annotated. This study reports the new powdery mildew resistance gene Pm68 that would be a valuable resource for improvement of both common wheat and durum wheat. The co-segregated markers (Xdw05-Xdw11) developed here would be useful tools for marker-assisted selection (MAS) in breeding.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Hibridização Genômica Comparativa , Cruzamentos Genéticos , Genes Dominantes , Genes de Plantas , Marcadores Genéticos , Grécia , Doenças das Plantas/microbiologia , RNA-Seq , Triticum/genética , Triticum/microbiologia
6.
Plant Dis ; 105(12): 4042-4050, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34260283

RESUMO

Wheat powdery mildew, caused by Blumeria graminis (DC.) Speer f. sp. tritici is a destructive disease seriously threatening yield and quality of common wheat (Triticum aestivum L., 2n=6x=42, AABBDD). Characterization of resistance genes against powdery mildew is useful in parental selection and for developing disease-resistant cultivars. Chinese wheat breeding line KN0816 has superior agronomic performance and resistance to powdery mildew at all growth stages. Genetic analysis using populations of KN0816 crossed with different susceptible parents indicated that a single dominant gene, tentatively designated PmKN0816, conferred seedling resistance to different B. graminis f. sp. tritici isolates. Using a bulked segregant analysis, PmKN0816 was mapped to the Pm6 interval on chromosome arm 2BL using polymorphic markers linked to the cataloged genes Pm6, Pm52, and Pm64, and flanked by the markers CISSR02g-6 and CIT02g-2, both with genetic distances of 0.7 cM. Analysis of closely linked molecular markers indicated that the marker alleles of PmKN0816 differed from those of other powdery mildew resistance genes on 2BL, including Pm6, Pm33, Pm51, Pm64, and PmQ. Based on the genetic and physical locations and response pattern to different B. graminis f. sp. tritici isolates, PmKN0816 is most likely a new powdery mildew resistance gene and possesses effective resistance to all the 14 tested B. graminis f. sp. tritici isolates. In view of the elite agronomic performance of KN0816 combined with the resistance, PmKN0816 is expected to become a valuable resistance gene in wheat breeding. To transfer PmKN0816 to different genetic backgrounds using marker-assisted selection (MAS), closely linked markers of PmKN0816 were evaluated, and four of them (CIT02g-2, CISSR02g-6, CIT02g-10, and CIT02g-17) were confirmed to be applicable for MAS in different genetic backgrounds.


Assuntos
Resistência à Doença , Doenças das Plantas , Triticum , Ascomicetos/patogenicidade , Mapeamento Cromossômico , Resistência à Doença/genética , Genes de Plantas , Marcadores Genéticos , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia
7.
Plant Dis ; 105(10): 2844-2850, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33881917

RESUMO

Wheat powdery mildew is a devastating disease that seriously threatens yield worldwide. Utilization of host resistance is considered an effective strategy to minimize powdery mildew damage. Pm21, PmV, and Pm12 confer broad-spectrum resistance to wheat powdery mildew in China, of which Pm21 and PmV are allelic genes derived from the 6VS chromosome of Dasypyrum villosum, and Pm12 is derived from the 6SS chromosome of Aegilops speltoides and most likely orthologous to the former two genes. To accurately and efficiently transfer and pyramid these genes using marker-assisted selection (MAS), distinctive single-nucleotide polymorphisms (SNPs) among the exon sequences of Pm21, PmV, and Pm12 and their homologous sequences in the common wheat genome were identified and then used for developing diagnostic Kompetitive Allele-Specific PCR (KASP) markers. The markers were validated in different genotypes including transgenic vectors, transgenic lines, translocation lines, resistance stocks with documented Pm genes, and in multiple susceptible cultivars without Pm genes. As a result, we initially developed a KASP marker that can simultaneously diagnose Pm21, Pm12, and PmV. Subsequently, we obtained a highly diagnostic KASP marker for each of the three genes that could distinguish among the three genes and also accurately distinguish them from other resistant stocks with documented Pm genes and from multiple susceptible genotypes. Compared with previously reported markers, the highly diagnostic KASP markers developed in this study have the advantages of low cost, easy assay, accuracy, and potentially high throughput for MAS.


Assuntos
Resistência à Doença , Triticum , Alelos , Resistência à Doença/genética , Genes de Plantas/genética , Marcadores Genéticos/genética , Doenças das Plantas/genética , Reação em Cadeia da Polimerase , Triticum/genética
8.
Int J Mol Sci ; 19(2)2018 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-29495297

RESUMO

Pm21, derived from wheat wild relative Dasypyrum villosum, is one of the most effective powdery mildew resistance genes and has been widely applied in wheat breeding in China. Mapping and cloning Pm21 are of importance for understanding its resistance mechanism. In the present study, physical mapping was performed using different genetic stocks involving in structural variations of chromosome 6VS carrying Pm21. The data showed that 6VS could be divided into eight distinguishable chromosomal bins, and Pm21 was mapped to the bin FLb4-b5/b6 closely flanked by the markers 6VS-08.6 and 6VS-10.2. Comparative genomic mapping indicated that the orthologous regions of FLb4-b5/b6 carrying Pm21 were narrowed to a 117.7 kb genomic region harboring 19 genes in Brachypodium and a 37.7 kb region harboring 5 genes in rice, respectively. The result was consistent with that given by recent genetic mapping in diploid D. villosum. In conclusion, this study demonstrated that physical mapping based on chromosomal structural variations is an efficient method for locating alien genes in wheat background.


Assuntos
Cromossomos de Plantas , Resistência à Doença/genética , Genes de Plantas , Variação Genética , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Doenças das Plantas/genética , Triticum/genética , Triticum/microbiologia , Mapeamento Cromossômico , Biologia Computacional/métodos , Evolução Molecular , Marcadores Genéticos , Genoma de Planta , Genômica/métodos , Doenças das Plantas/microbiologia , Polimorfismo Genético
9.
Theor Appl Genet ; 129(4): 819-829, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26791837

RESUMO

KEY MESSAGE: The powdery mildew resistance gene Pm21 was physically and comparatively mapped by newly developed markers. Seven candidate genes were verified to be required for Pm21 -mediated resistance to wheat powdery mildew. Pm21, a gene derived from wheat wild relative Dasypyrum villosum, has been transferred into common wheat and widely utilized in wheat resistance breeding for powdery mildew. Previously, Pm21 has been located to the bin FL0.45-0.58 of 6VS by using deletion stocks. However, its fine mapping is still a hard work. In the present study, 30 gene-derived 6VS-specific markers were obtained based on the collinearity among genomes of Brachypodium distachyon, Oryza and Triticeae, and then physically and comparatively mapped in the bin FL0.45-0.58 and its nearby chromosome region. According to the maps, the bin FL0.45-0.58 carrying Pm21 was closely flanked by the markers 6VS-03 and 6VS-23, which further narrowed the orthologous regions to 1.06 Mb in Brachypodium and 1.38 Mb in rice, respectively. Among the conserved genes shared by Brachypodium and rice, four serine/threonine protein kinase genes (DvMPK1, DvMLPK, DvUPK and DvPSYR1), one protein phosphatase gene (DvPP2C) and two transcription factor genes (DvGATA and DvWHY) were confirmed to be required for Pm21-mediated resistance to wheat powdery mildew by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) and transcriptional pattern analyses. In summary, this study gives new insights into the genetic basis of the Pm21 locus and the disease resistance pathways mediated by Pm21.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Mapeamento Físico do Cromossomo , Doenças das Plantas/genética , Triticum/genética , Ascomicetos , Brachypodium/genética , DNA de Plantas/genética , Marcadores Genéticos , Oryza/genética , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Triticum/microbiologia
10.
Geriatr Gerontol Int ; 23(2): 98-102, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36577544

RESUMO

AIM: This paper analyzes the adaptive changes that take place in mature and elderly women with different track records in social sports in order to develop health and rehabilitation techniques based on personalized and groupwise approaches. METHODS: This longitudinal study was conducted between 2009 and 2019 in Zhengzhou, China. The sample consisted of 24 mature and elderly women (45-65 years old) in the experimental group (regular social sports) and 40 women of the same age who did not exercise (control group). The experimental group received physiotherapy twice a week. The sessions were scheduled for 10 a.m. and lasted for 3 h. The functional status of cardiovascular system parameters (blood pressure, heart rate) was measured. In addition, the physical working capacity (PWC 150), as well as the coefficient of body adaptation to stress and the Robinson index (the amount of oxygen required by the human body to function) were estimated. RESULTS: Women from the experimental group maintained stable coefficients of adaptation during all 10 years over which the study was conducted. Women with a long track record (up to 10 years) revealed a slight increase in the body's functional capacity (P ≤ 0.05 with control). More than 50% of the women in the experimental group had cardiovascular measurements within or above the normal range, whereas the opposite was true in the control group. CONCLUSIONS: The longitudinal study revealed upward trends of physical working capacity indicators, which can slow down involutional changes in the body. In some cases, the body's functional capacity may be improved. Geriatr Gerontol Int 2023; 23: 98-102.


Assuntos
Exercício Físico , Esportes , Humanos , Feminino , Idoso , Estudos Longitudinais , Exercício Físico/fisiologia , Envelhecimento/fisiologia , Terapia por Exercício/métodos
11.
Plant Commun ; 4(2): 100472, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36352792

RESUMO

Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a devastating disease that threatens wheat production worldwide. Pm12, which originated from Aegilops speltoides, a wild relative of wheat, confers strong resistance to powdery mildew and therefore has potential use in wheat breeding. Using susceptible mutants induced by gamma irradiation, we physically mapped and isolated Pm12 and showed it to be orthologous to Pm21 from Dasypyrum villosum, also a wild relative of wheat. The resistance function of Pm12 was validated via ethyl methanesulfonate mutagenesis, virus-induced gene silencing, and stable genetic transformation. Evolutionary analysis indicates that the Pm12/Pm21 loci in wheat species are relatively conserved but dynamic. Here, we demonstrated that the two orthologous genes, Pm12 and Pm21, possess differential resistance against the same set of Bgt isolates. Overexpression of the coiled-coil domains of both PM12 and PM21 induces cell death in Nicotiana benthamiana leaves. However, their full-length forms display different cell death-inducing activities caused by their distinct intramolecular interactions. Cloning of Pm12 will facilitate its application in wheat breeding programs. This study also gives new insight into two orthologous resistance genes, Pm12 and Pm21, which show different race specificities and intramolecular interaction patterns.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Genes de Plantas , Poaceae/genética
12.
Front Plant Sci ; 13: 988641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017260

RESUMO

Wheat powdery mildew is a devastating disease leading to severe yield loss. The powdery mildew resistance gene Pm21, encoding a nucleotide-binding leucine-rich repeat receptor (NLR) protein, confers broad-spectrum resistance to powdery mildew and has great potential for controlling this disease. In this study, a large-scale mutagenesis was conducted on wheat cultivar (cv.) Yangmai 18 carrying Pm21. As a result, a total of 113 independent mutant lines susceptible to powdery mildew were obtained, among which, only one lost the whole Pm21 locus and the other 112 harbored one- (107) or two-base (5) mutations in the encoding region of Pm21. From the 107 susceptible mutants containing one-base change, we found that 25 resulted in premature stop codons leading to truncated proteins and 82 led to amino acid changes involving in 59 functional sites. We determined the mutations per one hundred amino acids (MPHA) indexes of different domains, motifs, and non-domain and non-motif regions of PM21 protein and found that the loss-of-function mutations occurred in a tendentious means. We also observed a new mutation hotspot that was closely linked to RNBS-D motif of the NB-ARC domain and relatively conserved in different NLRs of wheat crops. In addition, we crossed all the susceptible mutants with Yangmai 18 carrying wild-type Pm21, subsequently phenotyped their F1 plants and revealed that the variant E44K in the coiled-coil (CC) domain could lead to dominant-negative effect. This study revealed key functional sites of PM21 and their distribution characteristics, which would contribute to understanding the relationship of resistance and structure of Pm21-encoded NLR.

13.
Mol Plant Pathol ; 21(7): 975-984, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32421925

RESUMO

Nucleotide-binding (NB) leucine-rich repeat (LRR) receptors (NLRs) provide resistance against several plant pathogens. We previously cloned the wheat powdery mildew resistance gene Pm21, which encodes a coiled-coil (CC) NLR that confers broad-spectrum resistance against Blumeria graminis f. sp. tritici. Here, we report comprehensive biochemical and functional analyses of Pm21 CC domain in Nicotiana benthamiana. Transient overexpression assay suggested that only the extended CC (eCC, amino acid residues 1-159) domain has cell-death-inducing activity, whereas the CC-containing truncations, including CC-NB and CC-NB-LRR, do not induce cell-death responses. Coimmunoprecipitation (Co-IP) assay showed that the eCC domain self-associates and interacts with the NB and LRR domains in planta. These results imply that the activity of the eCC domain is inhibited by the intramolecular interactions of different domains in the absence of pathogens. We found that the LRR domain plays a crucial role in D491V-mediated full-length (FL) Pm21 autoactivation. Some mutations in the CC domain leading to the loss of Pm21 resistance to powdery mildew impaired the CC activity of cell-death induction. Two mutations (R73Q and E80K) interfered with D491V-mediated Pm21 autoactivation without affecting the cell-death-inducing activity of the eCC domain. Notably, some susceptible mutants harbouring mutations in the CC domain still exhibited cell-death-inducing activity. Taken together, these results implicate the CC domain of Pm21 in cell-death signalling and disease-resistance signalling, which are potentially independent of each other.


Assuntos
Morte Celular , Resistência à Doença/genética , Proteínas NLR/fisiologia , Doenças das Plantas/genética , Domínios Proteicos/fisiologia , Triticum/imunologia , Triticum/microbiologia , Mutação , Proteínas NLR/química , Proteínas NLR/genética , Células Vegetais/patologia , Transdução de Sinais , Nicotiana
14.
Front Genet ; 11: 489, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477413

RESUMO

Wheat powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a devastating disease that threatens wheat production and yield worldwide. The powdery mildew resistance gene Pm21, originating from wheat wild relative Dasypyrum villosum, encodes a coiled-coil, nucleotide-binding site, leucine-rich repeat (CC-NBS-LRR) protein and confers broad-spectrum resistance to wheat powdery mildew. In the present study, we isolated 73 Pm21 alleles from different powdery mildew-resistant D. villosum accessions, among which, 38 alleles were non-redundant. Sequence analysis identified seven minor insertion-deletion (InDel) polymorphisms and 400 single nucleotide polymorphisms (SNPs) among the 38 non-redundant Pm21 alleles. The nucleotide diversity of the LRR domain was significantly higher than those of the CC and NB-ARC domains. Further evolutionary analysis indicated that the solvent-exposed LRR residues of Pm21 alleles had undergone diversifying selection (dN/dS = 3.19734). In addition, eight LRR motifs and four amino acid sites in the LRR domain were also experienced positive selection, indicating that these motifs and sites play critical roles in resistance specificity. The phylogenetic tree showed that 38 Pm21 alleles were divided into seven classes. Classes A (including original Pm21), B and C were the major classes, including 26 alleles (68.4%). We also identified three non-functional Pm21 alleles from four susceptible homozygous D. villosum lines (DvSus-1 to DvSus-4) and two susceptible wheat-D. villosum chromosome addition lines (DA6V#1 and DA6V#3). The genetic variations of non-functional Pm21 alleles involved point mutation, deletion and insertion, respectively. The results also showed that the non-functional Pm21 alleles in the two chromosome addition lines both came from the susceptible donors of D. villosum. This study gives a new insight into the evolutionary characteristics of Pm21 alleles and discusses how to sustainably utilize Pm21 in wheat production. This study also reveals the sequence variants and origins of non-functional Pm21 alleles in D. villosum populations.

15.
Front Genet ; 11: 241, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300355

RESUMO

Powdery mildew infection of wheat (Triticum aestivum L.), caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive disease that threatens yield and quality worldwide. The most effective and preferred means for the control of the disease is to identify broad-spectrum resistance genes for breeding, especially the genes derived from elite cultivars that exhibit desirable agronomic traits. Jimai 23 is a Chinese wheat cultivar with superior agronomic performance, high-quality characteristics, and effective resistance to powdery mildew at all growth stages. Genetic analysis indicated that powdery mildew resistance in Jimai 23 was mediated by a single dominant gene, tentatively designated PmJM23. Using bulked segregant RNA-Seq (BSR-Seq), a series of markers was developed and used to map PmJM23. PmJM23 was then located at the Pm2 locus on the short arm of chromosome 5D (5DS). Resistance spectrum analysis demonstrated that PmJM23 provided a broad resistance spectrum different from that of the documented Pm2 alleles, indicating that PmJM23 is most likely a new allele of Pm2. In view of these combined agronomic, quality, and resistance findings, PmJM23 is expected to be a valuable resistance gene in wheat breeding. To efficiently use PmJM23 in breeding, the closely linked markers of PmJM23 were evaluated and confirmed to be applicable for marker-assisted selection (MAS). Using these markers, a series of resistant breeding lines with high resistance and desirable agronomic performance was selected from the crosses involving PmJM23, resulting in improved powdery mildew resistance of these lines.

16.
Front Genet ; 11: 474, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32536936

RESUMO

Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive fungal diseases threatening global wheat production. Host resistance is well known to be the most efficient method to control this disease. However, the molecular mechanism of wheat powdery mildew resistance (Pm) is still unclear. To analyze the molecular mechanism of Pm, we used the resistant wheat cultivar Jimai 23 to investigate its potential resistance components and profiled its expression in response to powdery mildew infection using bulked segregant RNA-Seq (BSR-Seq). We showed that the Pm of Jimai 23 was provided by a single dominant gene, tentatively designated PmJM23, and assigned it to the documented Pm2 region of chromosome 5DS. 3,816 consistently different SNPs were called between resistant and susceptible parents and the bulked pools derived from the combinations between the resistant parent Jimai23 and the susceptible parent Tainong18. 58 of the SNPs were assigned to the candidate region of PmJM23. Subsequently, 3,803 differentially expressed genes (DEGs) between parents and bulks were analyzed by GO, COG and KEGG pathway enrichment. The temporal expression patterns of associated genes following Bgt inoculation were further determined by RT-qPCR. Expression of six disease-related genes was investigated during Bgt infection and might serve as valuable genetic resources for the improvement of durable resistance to Bgt.

17.
BMC Genomics ; 10: 91, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19243590

RESUMO

BACKGROUND: Baculoviruses are well known for their potential as biological agents for controlling agricultural and forest pests. They are also widely used as expression vectors in molecular cloning studies. The genome sequences of 48 baculoviruses are currently available in NCBI databases. As the number of sequenced viral genomes increases, it is important for the authors to present sufficiently detailed analyses and annotations to advance understanding of them. In this study, the complete genome of Clanis bilineata nucleopolyhedrovirus (ClbiNPV) has been sequenced and analyzed in order to understand this virus better. RESULTS: The genome of ClbiNPV contains 135,454 base pairs (bp) with a G+C content of 37%, and 139 putative open reading frames (ORFs) of at least 150 nucleotides. One hundred and twenty-six of these ORFs have homologues with other baculovirus genes while the other 13 are unique to ClbiNPV. The 30 baculovirus core genes are all present in ClbiNPV. Phylogenetic analysis based on the combined pif-2 and lef-8 sequences places ClbiNPV in the Group II Alphabaculoviruses. This result is consistent with the absence of gp64 from the ClbiNPV genome and the presence instead of a fusion protein gene, characteristic of Group II. Blast searches revealed that ClbiNPV encodes a photolyase-like gene sequence, which has a 1-bp deletion when compared with photolyases of other baculoviruses. This deletion disrupts the sequence into two small photolyase ORFs, designated Clbiphr-1 and Clbiphr-2, which correspond to the CPD-DNA photolyase and FAD-binding domains of photolyases, respectively. CONCLUSION: ClbiNPV belongs to the Group II Alphabaculoviruses and is most closely related to OrleNPV, LdMNPV, TnSNPV, EcobNPV and ChchNPV. It contains a variant DNA photolyase gene, which only exists in ChchNPV, TnSNPV and SpltGV among the baculoviruses.


Assuntos
Genoma Viral , Lepidópteros/virologia , Nucleopoliedrovírus/genética , Animais , Composição de Bases , Sequência de Bases , DNA Viral/genética , Desoxirribodipirimidina Fotoliase/genética , Genes Virais , Larva/virologia , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA , Deleção de Sequência
19.
Front Plant Sci ; 8: 1914, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163626

RESUMO

Pm21, originating from wheat wild relative Dasypyrum villosum, confers immunity to all known races of Blumeria graminis f. sp. tritici (Bgt) and has been widely utilized in wheat breeding. However, little is known on the genetic basis of the Pm21 locus. In the present study, four seedling-susceptible D. villosum lines (DvSus-1 ∼ DvSus-4) were identified from different natural populations. Based on the collinearity among genomes of Brachypodium distachyon, Oryza, and Triticeae, a set of 25 gene-derived markers were developed declaring the polymorphisms between DvRes-1 carrying Pm21 and DvSus-1. Fine genetic mapping of Pm21 was conducted by using an extremely large F2 segregation population derived from the cross DvSus-1/DvRes-1. Then Pm21 was narrowed to a 0.01-cM genetic interval defined by the markers 6VS-08.4b and 6VS-10b. Three DNA markers, including a resistance gene analog marker, were confirmed to co-segregate with Pm21. Moreover, based on the susceptible deletion line Y18-S6 induced by ethyl methanesulfonate treatment conducted on Yangmai 18, Pm21 was physically mapped into a similar interval. Comparative analysis revealed that the orthologous regions of the interval carrying Pm21 were narrowed to a 112.5 kb genomic region harboring 18 genes in Brachypodium, and a 23.2 kb region harboring two genes in rice, respectively. This study provides a high-density integrated map of the Pm21 locus, which will contribute to map-based cloning of Pm21.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA