Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Pathol ; 194(6): 879-893, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38417698

RESUMO

Cholestatic liver diseases encompass a range of organic damages, metabolic disorders, and dysfunctions within the hepatobiliary system, arising from various pathogenic causes. These factors contribute to disruptions in bile production, secretion, and excretion. Cholestatic liver diseases can be classified into intrahepatic and extrahepatic cholestasis, according to the location of occurrence. The etiology of cholestatic liver diseases is complex, and includes drugs, poisons, viruses, parasites, bacteria, autoimmune responses, tumors, and genetic metabolism. The pathogenesis of cholelstatic liver disease is not completely clarified, and effective therapy is lacking. Clarifying its mechanism to find more effective therapeutic targets and drugs is an unmet need. Increasing evidence demonstrates that miRNA and long noncoding RNA are involved in the progression of cholestatic liver diseases. This review provides a comprehensive summary of the research progress on the roles of miRNA and long noncoding RNA in cholestatic liver diseases. The aim of the review is to enhance the understanding of their potential diagnostic, therapeutic, and prognostic value for patients with cholestasis.


Assuntos
Colestase , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Colestase/genética , Colestase/metabolismo , Colestase/patologia , Animais , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/patologia
2.
BMC Genomics ; 25(1): 699, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020298

RESUMO

BACKGROUND: Cassava is one of three major potato crops and the sixth most important food crop globally. Improving yield remains a primary aim in cassava breeding. Notably, plant height significantly impacts the yield and quality of crops; however, the mechanisms underlying cassava plant height development are yet to be elucidated. RESULTS: In this study, we investigated the mechanisms responsible for cassava plant height development using phenotypic, anatomical, and transcriptomic analyses. Phenotypic and anatomical analysis revealed that compared to the high-stem cassava cultivar, the dwarf-stem cassava cultivar exhibited a significant reduction in plant height and a notable increase in internode tissue xylem area. Meanwhile, physiological analysis demonstrated that the lignin content of dwarf cassava was significantly higher than that of high cassava. Notably, transcriptome analysis of internode tissues identified several differentially expressed genes involved in cell wall synthesis and expansion, plant hormone signal transduction, phenylpropanoid biosynthesis, and flavonoid biosynthesis between the two cassava cultivars. CONCLUSIONS: Our findings suggest that internode tissue cell division, secondary wall lignification, and hormone-related gene expression play important roles in cassava plant height development. Ultimately, this study provides new insights into the mechanisms of plant height morphogenesis in cassava and identifies candidate regulatory genes associated with plant height that can serve as valuable genetic resources for future crop dwarfing breeding.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Manihot , Manihot/genética , Manihot/crescimento & desenvolvimento , Manihot/metabolismo , Fenótipo , Transcriptoma , Lignina/metabolismo , Lignina/biossíntese
3.
BMC Plant Biol ; 24(1): 628, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961375

RESUMO

BACKGROUND: Cyperus stoloniferus is an important species in coastal ecosystems and possesses economic and ecological value. To elucidate the structural characteristics, variation, and evolution of the organelle genome of C. stoloniferus, we sequenced, assembled, and compared its mitochondrial and chloroplast genomes. RESULTS: We assembled the mitochondrial and chloroplast genomes of C. stoloniferus. The total length of the mitochondrial genome (mtDNA) was 927,413 bp, with a GC content of 40.59%. It consists of two circular DNAs, including 37 protein-coding genes (PCGs), 22 tRNAs, and five rRNAs. The length of the chloroplast genome (cpDNA) was 186,204 bp, containing 93 PCGs, 40 tRNAs, and 8 rRNAs. The mtDNA and cpDNA contained 81 and 129 tandem repeats, respectively, and 346 and 1,170 dispersed repeats, respectively, both of which have 270 simple sequence repeats. The third high-frequency codon (RSCU > 1) in the organellar genome tended to end at A or U, whereas the low-frequency codon (RSCU < 1) tended to end at G or C. The RNA editing sites of the PCGs were relatively few, with only 9 and 23 sites in the mtDNA and cpDNA, respectively. A total of 28 mitochondrial plastid DNAs (MTPTs) in the mtDNA were derived from cpDNA, including three complete trnT-GGU, trnH-GUG, and trnS-GCU. Phylogeny and collinearity indicated that the relationship between C. stoloniferus and C. rotundus are closest. The mitochondrial rns gene exhibited the greatest nucleotide variability, whereas the chloroplast gene with the greatest nucleotide variability was infA. Most PCGs in the organellar genome are negatively selected and highly evolutionarily conserved. Only six mitochondrial genes and two chloroplast genes exhibited Ka/Ks > 1; in particular, atp9, atp6, and rps7 may have undergone potential positive selection. CONCLUSION: We assembled and validated the mtDNA of C. stoloniferus, which contains a 15,034 bp reverse complementary sequence. The organelle genome sequence of C. stoloniferus provides valuable genomic resources for species identification, evolution, and comparative genomic research in Cyperaceae.


Assuntos
Cyperus , Genoma de Cloroplastos , Genoma Mitocondrial , Cyperus/genética , Filogenia , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/genética , Composição de Bases , Álcalis
4.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891844

RESUMO

Pueraria montana is a species with important medicinal value and a complex genetic background. In this study, we sequenced and assembled the mitochondrial (mt) genomes of two varieties of P. montana. The mt genome lengths of P. montana var. thomsonii and P. montana var. montana were 457,390 bp and 456,731 bp, respectively. Both P. montana mitogenomes showed a multi-branched structure consisting of two circular molecules, with 56 genes annotated, comprising 33 protein-coding genes, 18 tRNA genes (trnC-GCA and trnM-CAU are multi-copy genes), and 3 rRNA genes. Then, 207 pairs of long repeats and 96 simple sequence repeats (SSRs) were detected in the mt genomes of P. montana, and 484 potential RNA-editing sites were found across the 33 mitochondrial protein-coding genes of each variety. Additionally, a syntenic sequence analysis showed a high collinearity between the two mt genomes. This work is the first to analyze the mt genomes of P. montana. It can provide information that can be used to analyze the structure of mt genomes of higher plants and provide a foundation for future comparative genomic studies and evolutionary biology research in related species.


Assuntos
Genoma Mitocondrial , Pueraria , Pueraria/genética , Pueraria/classificação , Repetições de Microssatélites/genética , Filogenia , RNA de Transferência/genética , Anotação de Sequência Molecular , Genoma de Planta , Edição de RNA
5.
Micromachines (Basel) ; 15(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930751

RESUMO

This research explores the architecture and efficacy of GaN/AlxGa1-xN-based heterojunction phototransistors (HPTs) engineered with both a compositionally graded and a doping-graded base. Employing theoretical analysis along with empirical fabrication techniques, HPTs configured with an aluminum compositionally graded base were observed to exhibit a substantial enhancement in current gain. Specifically, theoretical models predicted a 12-fold increase, while experimental evaluations revealed an even more pronounced improvement of approximately 27.9 times compared to conventional GaN base structures. Similarly, HPTs incorporating a doping-graded base demonstrated significant gains, with theoretical predictions indicating a doubling of current gain and experimental assessments showing a 6.1-fold increase. The doping-graded base implements a strategic modulation of hole concentration, ranging from 3.8 × 1016 cm-3 at the base-emitter interface to 3.8 × 1017 cm-3 at the base-collector junction. This controlled gradation markedly contributes to the observed enhancements in current gain. The principal mechanism driving these improvements is identified as the increased electron drift within the base, propelled by the intrinsic electric field inherent to both the compositionally and doping-graded structures. These results highlight the potential of such graded base designs in enhancing the performance of GaN/AlxGa1-xN HPTs and provide crucial insights for the advancement of future phototransistor technologies.

6.
Neural Regen Res ; 20(5): 1513-1520, 2025 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-39075917

RESUMO

Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase brain-derived neurotrophic factor levels in children and adolescents, the effects of specific types of exercise on brain-derived neurotrophic factor levels are still controversial. To address this issue, we used meta-analytic methods to quantitatively evaluate, analyze, and integrate relevant studies. Our goals were to formulate general conclusions regarding the use of exercise interventions, explore the physiological mechanisms by which exercise improves brain health and cognitive ability in children and adolescents, and provide a reliable foundation for follow-up research. We used the PubMed, Web of Science, Science Direct, Springer, Wiley Online Library, Weipu, Wanfang, and China National Knowledge Infrastructure databases to search for randomized controlled trials examining the influences of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents. The extracted data were analyzed using ReviewManager 5.3. According to the inclusion criteria, we assessed randomized controlled trials in which the samples were mainly children and adolescents, and the outcome indicators were measured before and after the intervention. We excluded animal experiments, studies that lacked a control group, and those that did not report quantitative results. The mean difference (MD; before versus after intervention) was used to evaluate the effect of exercise on brain-derived neurotrophic factor levels in children and adolescents. Overall, 531 participants (60 children and 471 adolescents, 10.9-16.1 years) were included from 13 randomized controlled trials. Heterogeneity was evaluated using the Q statistic and I2 test provided by ReviewManager software. The meta-analysis showed that there was no heterogeneity among the studies (P = 0.67, I2 = 0.00%). The combined effect of the interventions was significant (MD = 2.88, 95% CI: 1.53-4.22, P < 0.0001), indicating that the brain-derived neurotrophic factor levels of the children and adolescents in the exercise group were significantly higher than those in the control group. In conclusion, different types of exercise interventions significantly increased brain-derived neurotrophic factor levels in children and adolescents. However, because of the small sample size of this meta-analysis, more high-quality research is needed to verify our conclusions. This meta-analysis was registered at PROSPERO (registration ID: CRD42023439408).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA