Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(3): 609-623.e21, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244548

RESUMO

Phosphatidic acid (PA) and reactive oxygen species (ROS) are crucial cellular messengers mediating diverse signaling processes in metazoans and plants. How PA homeostasis is tightly regulated and intertwined with ROS signaling upon immune elicitation remains elusive. We report here that Arabidopsis diacylglycerol kinase 5 (DGK5) regulates plant pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). The pattern recognition receptor (PRR)-associated kinase BIK1 phosphorylates DGK5 at Ser-506, leading to a rapid PA burst and activation of plant immunity, whereas PRR-activated intracellular MPK4 phosphorylates DGK5 at Thr-446, which subsequently suppresses DGK5 activity and PA production, resulting in attenuated plant immunity. PA binds and stabilizes the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), regulating ROS production in plant PTI and ETI, and their potentiation. Our data indicate that distinct phosphorylation of DGK5 by PRR-activated BIK1 and MPK4 balances the homeostasis of cellular PA burst that regulates ROS generation in coordinating two branches of plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Diacilglicerol Quinase , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Diacilglicerol Quinase/metabolismo , NADPH Oxidases/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosforilação , Imunidade Vegetal , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo
2.
Plant Cell ; 36(4): 919-940, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38180963

RESUMO

Soil salinity results in oxidative stress and heavy losses to crop production. The S-acylated protein SALT TOLERANCE RECEPTOR-LIKE CYTOPLASMIC KINASE 1 (STRK1) phosphorylates and activates CATALASE C (CatC) to improve rice (Oryza sativa L.) salt tolerance, but the molecular mechanism underlying its S-acylation involved in salt signal transduction awaits elucidation. Here, we show that the DHHC-type zinc finger protein DHHC09 S-acylates STRK1 at Cys5, Cys10, and Cys14 and promotes salt and oxidative stress tolerance by enhancing rice H2O2-scavenging capacity. This modification determines STRK1 targeting to the plasma membrane or lipid nanodomains and is required for its function. DHHC09 promotes salt signaling from STRK1 to CatC via transphosphorylation, and its deficiency impairs salt signal transduction. Our findings demonstrate that DHHC09 S-acylates and anchors STRK1 to the plasma membrane to promote salt signaling from STRK1 to CatC, thereby regulating H2O2 homeostasis and improving salt stress tolerance in rice. Moreover, overexpression of DHHC09 in rice mitigates grain yield loss under salt stress. Together, these results shed light on the mechanism underlying the role of S-acylation in RLK/RLCK-mediated salt signal transduction and provide a strategy for breeding highly salt-tolerant rice.


Assuntos
Oryza , Tolerância ao Sal , Tolerância ao Sal/genética , Oryza/metabolismo , Peróxido de Hidrogênio/metabolismo , Homeostase , Dedos de Zinco , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(3): e2315354120, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194459

RESUMO

The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previously suggested that an insufficient mucosal immunoglobulin A (IgA) response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot sufficiently boost the mucosal secretory IgA response in uninfected individuals, particularly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric, and secretory IgA1 antibodies derived from four neutralizing IgG monoclonal antibodies (mAbs 01A05, rmAb23, DXP-604, and XG014) targeting the receptor-binding domain of the spike protein. Compared to their parental IgG antibodies, dimeric and secretory IgA1 antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgA1 form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2, and BA.4/5 with a 25- to 75-fold increase in potency. In human angiotensin converting enzyme 2 (ACE2) transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Thus, dimeric or secretory IgA delivered by nasal administration may potentially be exploited for the treatment and prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by the current circulating subvariants and, potentially, future VOCs.


Assuntos
Anticorpos Monoclonais , Imunoglobulina A Secretora , Animais , Camundongos , Humanos , Imunoglobulina G , Imunoglobulina A , Administração Intranasal , Camundongos Transgênicos
4.
Biophys J ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414236

RESUMO

In recent years, advancements in retinal image analysis, driven by machine learning and deep learning techniques, have enhanced disease detection and diagnosis through automated feature extraction. However, challenges persist, including limited data set diversity due to privacy concerns and imbalanced sample pairs, hindering effective model training. To address these issues, we introduce the vessel and style guided generative adversarial network (VSG-GAN), an innovative algorithm building upon the foundational concept of GAN. In VSG-GAN, a generator and discriminator engage in an adversarial process to produce realistic retinal images. Our approach decouples retinal image generation into distinct modules: the vascular skeleton and background style. Leveraging style transformation and GAN inversion, our proposed hierarchical variational autoencoder module generates retinal images with diverse morphological traits. In addition, the spatially adaptive denormalization module ensures consistency between input and generated images. We evaluate our model on MESSIDOR and RITE data sets using various metrics, including structural similarity index measure, inception score, Fréchet inception distance, and kernel inception distance. Our results demonstrate the superiority of VSG-GAN, outperforming existing methods across all evaluation assessments. This underscores its effectiveness in addressing data set limitations and imbalances. Our algorithm provides a novel solution to challenges in retinal image analysis by offering diverse and realistic retinal image generation. Implementing the VSG-GAN augmentation approach on downstream diabetic retinopathy classification tasks has shown enhanced disease diagnosis accuracy, further advancing the utility of machine learning in this domain.

5.
J Cell Mol Med ; 28(12): e18468, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923705

RESUMO

IL33 plays an important role in cancer. However, the role of liver cancer remains unclear. Open-accessed data was obtained from the Cancer Genome Atlas, Xena, and TISCH databases. Different algorithms and R packages are used to perform various analyses. Here, in our comprehensive study on IL33 in HCC, we observed its differential expression across cancers, implicating its role in cancer development. The single-cell analysis highlighted its primary expression in endothelial cells, unveiling correlations within the HCC microenvironment. Also, the expression level of IL33 was correlated with patients survival, emphasizing its potential prognostic value. Biological enrichment analyses revealed associations with stem cell division, angiogenesis, and inflammatory response. IL33's impact on the immune microenvironment showcased correlations with diverse immune cells. Genomic features and drug sensitivity analyses provided insights into IL33's broader implications. In a pan-cancer context, IL33 emerged as a potential tumour-inhibitor, influencing immune-related molecules. This study significantly advances our understanding of IL33 in cancer biology. IL33 exhibited differential expression across cancers, particularly in endothelial cells within the HCC microenvironment. IL33 is correlated with the survival of HCC patients, indicating potential prognostic value and highlighting its broader implications in cancer biology.


Assuntos
Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Interleucina-33 , Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/mortalidade , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Prognóstico , Interleucina-33/metabolismo , Interleucina-33/genética , Biomarcadores Tumorais/genética
6.
J Cell Mol Med ; 28(10): e18411, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780505

RESUMO

Hepatocellular carcinoma (HCC) represents a significant global health burden, necessitating an in-depth exploration of its molecular underpinnings to facilitate the development of effective therapeutic strategies. This investigation delves into the complex role of long non-coding RNAs (lncRNAs) in the modulation of hypoxia-induced HCC progression, with a specific emphasis on delineating and functionally characterizing the novel KLF4/Lnc18q22.2/ULBP3 axis. To elucidate the effects of hypoxic conditions on HCC cells, we established in vitro models under both normoxic and hypoxic environments, followed by lncRNA microarray analyses. Among the lncRNAs identified, Lnc18q22.2 was found to be significantly upregulated in HCC cells subjected to hypoxia. Subsequent investigations affirmed the oncogenic role of Lnc18q22.2, highlighting its critical function in augmenting HCC cell proliferation and migration. Further examination disclosed that Kruppel-like factor 4 (KLF4) transcriptionally governs Lnc18q22.2 expression in HCC cells, particularly under hypoxic stress. KLF4 subsequently enhances the tumorigenic capabilities of HCC cells through the modulation of Lnc18q22.2 expression. Advancing downstream in the molecular cascade, our study elucidates a novel interaction between Lnc18q22.2 and UL16-binding protein 3 (ULBP3), culminating in the stabilization of ULBP3 protein expression. Notably, ULBP3 was identified as a pivotal element, exerting dual functions by facilitating HCC tumorigenesis and mitigating immune evasion in hypoxia-exposed HCC cells. The comprehensive insights gained from our research delineate a hitherto unidentified KLF4/Lnc18q22.2/ULBP3 axis integral to the understanding of HCC tumorigenesis and immune escape under hypoxic conditions. This newly unveiled molecular pathway not only enriches our understanding of hypoxia-induced HCC progression but also presents novel avenues for therapeutic intervention.


Assuntos
Carcinogênese , Carcinoma Hepatocelular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Neoplasias Hepáticas , RNA Longo não Codificante , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/imunologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/imunologia , RNA Longo não Codificante/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Carcinogênese/genética , Carcinogênese/patologia , Animais , Movimento Celular/genética , Evasão Tumoral/genética , Camundongos , Hipóxia Celular/genética , Transdução de Sinais
7.
Mol Plant Microbe Interact ; 37(2): 73-83, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38416059

RESUMO

Embedded in the plasma membrane of plant cells, receptor kinases (RKs) and receptor proteins (RPs) act as key sentinels, responsible for detecting potential pathogenic invaders. These proteins were originally characterized more than three decades ago as disease resistance (R) proteins, a concept that was formulated based on Harold Flor's gene-for-gene theory. This theory implies genetic interaction between specific plant R proteins and corresponding pathogenic effectors, eliciting effector-triggered immunity (ETI). Over the years, extensive research has unraveled their intricate roles in pathogen sensing and immune response modulation. RKs and RPs recognize molecular patterns from microbes as well as dangers from plant cells in initiating pattern-triggered immunity (PTI) and danger-triggered immunity (DTI), which have intricate connections with ETI. Moreover, these proteins are involved in maintaining immune homeostasis and preventing autoimmunity. This review showcases seminal studies in discovering RKs and RPs as R proteins and discusses the recent advances in understanding their functions in sensing pathogen signals and the plant cell integrity and in preventing autoimmunity, ultimately contributing to a robust and balanced plant defense response. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.


Assuntos
Plantas , Receptores de Reconhecimento de Padrão , Receptores de Reconhecimento de Padrão/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Doença , Proteínas de Transporte , Imunidade Vegetal/genética , Doenças das Plantas
8.
J Cell Physiol ; 239(1): 193-211, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38164038

RESUMO

The transcription factor methylated c-Myc heterodimerizes with MAX to modulate gene expression, and plays an important role in energy metabolism in kidney injury but the exact mechanism remains unclear. Mitochondrial solute transporter Slc25a24 imports ATP into mitochondria and is central to energy metabolism. Gene Expression Omnibus data analysis reveals Slc25a24 and c-Myc are consistently upregulated in all the acute kidney injury (AKI) cells. Pearson correlation analysis also shows that Slc25a24 and c-Myc are strongly correlated (⍴ > 0.9). Mutant arginine methylated c-Myc (R299A and R346A) reduced its combination with MAX when compared with the wild type of c-Myc. On the other hand, the Slc25a24 levels were also correspondingly reduced, which induced the downregulation of ATP production. The results promoted reactive oxygen species (ROS) production and mitophagy generation. The study revealed that the c-Myc overexpression manifested the most pronounced mitochondrial DNA depletion. Additionally, the varied levels of mitochondrial proteins like TIM23, TOM20, and PINK1 in each group, particularly the elevated levels of PINK1 in AKI model groups and lower levels of TIM23 and TOM20 in the c-Myc overexpression group, suggest potential disruptions in mitochondrial dynamics and homeostasis, indicating enhanced mitophagy or mitochondrial loss. Therefore, arginine-methylated c-Myc affects mouse kidney injury by regulating mitochondrial ATP and ROS, and mitophagy via Slc25a24.


Assuntos
Injúria Renal Aguda , Proteínas de Ligação ao Cálcio , Proteínas de Transporte da Membrana Mitocondrial , Mitofagia , Proteínas Proto-Oncogênicas c-myc , Animais , Camundongos , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo
9.
J Am Chem Soc ; 146(9): 5998-6005, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38379163

RESUMO

Due to their programmable stimuli-responsiveness, excellent biocompatibility, and water-rich and soft structures similar to biological tissues, smart DNA hydrogels hold great promise for biosensing and biomedical applications. However, most DNA hydrogels developed to date are composed of randomly oriented and isotropic polymer networks, and the resulting slow response to biotargets and lack of anisotropic properties similar to those of biological tissues have limited their extensive applications. Herein, anisotropic DNA hydrogels consisting of unidirectional void channels internally oriented up to macroscopic length scales were constructed by a directional cryopolymerization method, as exemplified by a DNA-incorporated covalently cross-linked DNA cryogel and a DNA duplex structure noncovalently cross-linked DNA cryogel. Results showed that the formation of unidirectional channels significantly improved the responsiveness of the gel matrix to biomacromolecular substances and further endowed the DNA cryogels with anisotropic properties, including anisotropic mechanical properties, anisotropic swelling/shrinking behaviors, and anisotropic responsiveness to specific biotargets. Moreover, the abundant oriented and long macroporous channels in the gel matrix facilitated the migration of cells, and through the introduction of aptamer structures and thermosensitive polymers, an anisotropic DNA cryogel-based platform was further constructed to achieve the highly efficient capture and release of specific cells. These anisotropic DNA hydrogels may provide new opportunities for the development of anisotropic separation and biosensing systems.


Assuntos
Criogéis , Hidrogéis , Criogéis/química , Hidrogéis/química , Polímeros/química , DNA
10.
Mol Med ; 30(1): 30, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395749

RESUMO

BACKGROUND: Sepsis is a systemic inflammatory response which is frequently associated with acute lung injury (ALI). Activating transcription factor 3 (ATF3) promotes M2 polarization, however, the biological effects of ATF3 on macrophage polarization in sepsis remain undefined. METHODS: LPS-stimulated macrophages and a mouse model of cecal ligation and puncture (CLP)-induced sepsis were generated as in vitro and in vivo models, respectively. qRT-PCR and western blot were used to detect the expression of ATF3, ILF3, NEAT1 and other markers. The phenotypes of macrophages were monitored by flow cytometry, and cytokine secretion was measured by ELISA assay. The association between ILF3 and NEAT1 was validated by RIP and RNA pull-down assays. RNA stability assay was employed to assess NEAT1 stability. Bioinformatic analysis, luciferase reporter and ChIP assays were used to study the interaction between ATF3 and ILF3 promoter. Histological changes of lung tissues were assessed by H&E and IHC analysis. Apoptosis in lungs was monitored by TUNEL assay. RESULTS: ATF3 was downregulated, but ILF3 and NEAT1 were upregulated in PBMCs of septic patients, as well as in LPS-stimulated RAW264.7 cells. Overexpression of ATF3 or silencing of ILF3 promoted M2 polarization of RAW264.7 cells via regulating NEAT1. Mechanistically, ILF3 was required for the stabilization of NEAT1 through direct interaction, and ATF3 was a transcriptional repressor of ILF3. ATF3 facilitated M2 polarization in LPS-stimulated macrophages and CLP-induced septic lung injury via ILF3/NEAT1 axis. CONCLUSION: ATF3 triggers M2 macrophage polarization to protect against the inflammatory injury of sepsis through ILF3/NEAT1 axis.


Assuntos
Fator 3 Ativador da Transcrição , Macrófagos , RNA Longo não Codificante , Sepse , Animais , Humanos , Camundongos , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Proteínas do Fator Nuclear 90/genética , Proteínas do Fator Nuclear 90/metabolismo , Células RAW 264.7 , Sepse/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
11.
BMC Plant Biol ; 24(1): 366, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711037

RESUMO

BACKGROUND: Nitrogen (N) is essential for plant growth and development. In Lithocarpus polystachyus Rehd., a species known for its medicinal and food value, phlorizin is the major bioactive compound with pharmacological activity. Research has revealed a positive correlation between plant nitrogen (N) content and phlorizin synthesis in this species. However, no study has analyzed the effect of N fertilization on phlorizin content and elucidated the molecular mechanisms underlying phlorizin synthesis in L. polystachyus. RESULTS: A comparison of the L. polystachyus plants grown without (0 mg/plant) and with N fertilization (25, 75, 125, 175, 225, and 275 mg/plant) revealed that 75 mg N/plant fertilization resulted in the greatest seedling height, ground diameter, crown width, and total phlorizin content. Subsequent analysis of the leaves using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) detected 150 metabolites, including 42 flavonoids, that were differentially accumulated between the plants grown without and with 75 mg/plant N fertilization. Transcriptomic analysis of the L. polystachyus plants via RNA sequencing revealed 162 genes involved in flavonoid biosynthesis, among which 53 significantly differed between the N-treated and untreated plants. Fertilization (75 mg N/plant) specifically upregulated the expression of the genes phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), and phlorizin synthase (PGT1) but downregulated the expression of trans-cinnamate 4-monooxygenase (C4H), shikimate O-hydroxycinnamoyltransferase (HCT), and chalcone isomerase (CHI), which are related to phlorizin synthesis. Finally, an integrated analysis of the transcriptome and metabolome revealed that the increase in phlorizin after N fertilization was consistent with the upregulation of phlorizin biosynthetic genes. Quantitative real-time PCR (qRT‒PCR) was used to validate the RNA sequencing data. Thus, our results indicated that N fertilization increased phlorizin metabolism in L. polystachyus by regulating the expression levels of the PAL, PGT1, 5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase (C3'H), C4H, and HCT genes. CONCLUSIONS: Our results demonstrated that the addition of 75 mg/plant N to L. polystachyus significantly promoted the accumulation of flavonoids, including phlorizin, and the expression of flavonoid synthesis-related genes. Under these conditions, the genes PAL, 4CL, and PGT1 were positively correlated with phlorizin accumulation, while C4H, CHI, and HCT were negatively correlated with phlorizin accumulation. Therefore, we speculate that PAL, 4CL, and PGT1 participate in the phlorizin pathway under an optimal N environment, regulating phlorizin biosynthesis. These findings provide a basis for improving plant bioactive constituents and serve as a reference for further pharmacological studies.


Assuntos
Fertilizantes , Metaboloma , Nitrogênio , Florizina , Transcriptoma , Nitrogênio/metabolismo , Metaboloma/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Perfilação da Expressão Gênica , Espectrometria de Massas em Tandem , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Plant Biotechnol J ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852059

RESUMO

Apple is an important cash crop in China, and it is susceptible to fungal infections that have deleterious effects on its yield. Apple bitter rot caused by Colletorichum gloeosporioides is one of the most severe fungal diseases of apple. Salicylic acid (SA) is a key signalling molecule in the plant disease resistance signalling pathways. Lignin synthesis also plays a key role in conferring disease resistance. However, few studies have clarified the relationship between the SA disease resistance signalling pathway and the lignin disease resistance pathway in apple. MdMYB46 has previously been shown to promote lignin accumulation in apple and enhance salt and osmotic stress tolerance. Here, we investigated the relationship between MdMYB46 and biological stress; we found that MdMYB46 overexpression enhances the resistance of apple to C. gloeosporioides. We also identified MdARF1, a transcription factor upstream of MdMYB46, via yeast library screening and determined that MdARF1 was regulated by miR7125 through psRNATarget prediction. This regulatory relationship was confirmed through LUC and qRT-PCR experiments, demonstrating that miR7125 negatively regulates MdARF1. Analysis of the miR7125 promoter revealed that miR7125 responds to SA signals. The accumulation of SA level will result in the decrease of miR7125 expression level. In sum, the results of our study provide novel insights into the molecular mechanisms underlying the resistance of apple to C. gloeosporioides and reveal a new pathway that enhances lignin accumulation in apple in response to SA signals. These findings provide valuable information for future studies aimed at breeding apple for disease resistance.

13.
Plant Biotechnol J ; 22(9): 2395-2409, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38593377

RESUMO

Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes.


Assuntos
Resistência à Doença , Fusarium , Doenças das Plantas , Tricotecenos , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/metabolismo , Fusarium/patogenicidade , Tricotecenos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Genes Bacterianos/genética
14.
J Transl Med ; 22(1): 86, 2024 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-38246999

RESUMO

BACKGROUND: Obesity, a condition associated with the development of widespread cardiovascular disease, metabolic disorders, and other health complications, has emerged as a significant global health issue. Oleanolic acid (OA), a pentacyclic triterpenoid compound that is widely distributed in various natural plants, has demonstrated potential anti-inflammatory and anti-atherosclerotic properties. However, the mechanism by which OA fights obesity has not been well studied. METHOD: Network pharmacology was utilized to search for potential targets and pathways of OA against obesity. Molecular docking and molecular dynamics simulations were utilized to validate the interaction of OA with core targets, and an animal model of obesity induced by high-fat eating was then employed to confirm the most central of these targets. RESULTS: The network pharmacology study thoroughly examined 42 important OA targets for the treatment of obesity. The key biological processes (BP), cellular components (CC), and molecular functions (MF) of OA for anti-obesity were identified using GO enrichment analysis, including intracellular receptor signaling, intracellular steroid hormone receptor signaling, chromatin, nucleoplasm, receptor complex, endoplasmic reticulum membrane, and RNA polymerase II transcription Factor Activity. The KEGG/DAVID database enrichment study found that metabolic pathways, PPAR signaling pathways, cancer pathways/PPAR signaling pathways, insulin resistance, and ovarian steroidogenesis all play essential roles in the treatment of obesity and OA. The protein-protein interaction (PPI) network was used to screen nine main targets: PPARG, PPARA, MAPK3, NR3C1, PTGS2, CYP19A1, CNR1, HSD11B1, and AGTR1. Using molecular docking technology, the possible binding mechanism and degree of binding between OA and each important target were validated, demonstrating that OA has a good binding potential with each target. The molecular dynamics simulation's Root Mean Square Deviation (RMSD), and Radius of Gyration (Rg) further demonstrated that OA has strong binding stability with each target. Additional animal studies confirmed the significance of the core target PPARG and the core pathway PPAR signaling pathway in OA anti-obesity. CONCLUSION: Overall, our study utilized a multifaceted approach to investigate the value and mechanisms of OA in treating obesity, thereby providing a novel foundation for the identification and development of natural drug treatments.


Assuntos
Doenças Cardiovasculares , Ácido Oleanólico , Animais , Simulação de Acoplamento Molecular , Farmacologia em Rede , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , PPAR gama
15.
Pediatr Res ; 95(7): 1818-1825, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38212387

RESUMO

BACKGROUND: Early identification of children at risk of asthma can have significant clinical implications for effective intervention and treatment. This study aims to disentangle the relative timing and importance of early markers of asthma. METHODS: Using the CHILD Cohort Study, 132 variables measured in 1754 multi-ethnic children were included in the analysis for asthma prediction. Data up to 4 years of age was used in multiple machine learning models to predict physician-diagnosed asthma at age 5 years. Both predictive performance and variable importance was assessed in these models. RESULTS: Early-life data (≤1 year) has limited predictive ability for physician-diagnosed asthma at age 5 years (area under the precision-recall curve (AUPRC) < 0.35). The earliest reliable prediction of asthma is achieved at age 3 years, (area under the receiver-operator curve (AUROC) > 0.90) and (AUPRC > 0.80). Maternal asthma, antibiotic exposure, and lower respiratory tract infections remained highly predictive throughout childhood. Wheezing status and atopy are the most important predictors of early childhood asthma from among the factors included in this study. CONCLUSIONS: Childhood asthma is predictable from non-biological measurements from the age of 3 years, primarily using parental asthma and patient history of wheezing, atopy, antibiotic exposure, and lower respiratory tract infections. IMPACT: Machine learning models can predict physician-diagnosed asthma in early childhood (AUROC > 0.90 and AUPRC > 0.80) using ≥3 years of non-biological and non-genetic information, whereas prediction with the same patient information available before 1 year of age is challenging. Wheezing, atopy, antibiotic exposure, lower respiratory tract infections, and the child's mother having asthma were the strongest early markers of 5-year asthma diagnosis, suggesting an opportunity for earlier diagnosis and intervention and focused assessment of patients at risk for asthma, with an evolving risk stratification over time.


Assuntos
Asma , Coorte de Nascimento , Aprendizado de Máquina , Humanos , Asma/diagnóstico , Lactente , Pré-Escolar , Feminino , Masculino , Canadá , Estudos Longitudinais , Fatores de Risco , Sons Respiratórios , Recém-Nascido , Infecções Respiratórias/diagnóstico
16.
Pharmacol Res ; 207: 107306, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002871

RESUMO

Many inflammatory disorders, including diabetic kidney disease (DKD), are associated with pyroptosis, a type of inflammation-regulated cell death. The purpose of this work was to ascertain the effects of apabetalone, which targets BRD4, a specific inhibitor of the bromodomain (BRD) and extra-terminal (BET) proteins that target bromodomain 2, on kidney injury in DKD. This study utilized pharmacological and genetic approaches to investigate the effects of apabetalone on pyroptosis in db/db mice and human tubular epithelial cells (HK-2). BRD4 levels were elevated in HK-2 cells exposed to high glucose and in db/db mice. Modulating BRD4 levels led to changes in the generation of inflammatory cytokines and cell pyroptosis linked to NLRP3 inflammasome in HK-2 cells and db/db mice. Likewise, these cellular processes were mitigated by apabetalone through inhibition BRD4. Apabetalone or BRD4 siRNA suppressed PLK1 expression in HK-2 cells under high glucose by P300-dependent H3K27 acetylation on the PLK1 gene promoter, as demonstrated through chromatin immunoprecipitation and immunoprecipitation assays. To summarize, apabetalone relieves renal proptosis and fibrosis in DKD. BRD4 regulates the P300/H3K27ac/PLK1 axis, leading to the activation of the NLRP3 inflammasome and subsequent cell pyroptosis, inflammation, and fibrosis. These results may provide new perspectives on DKD treatment.

17.
Soft Matter ; 20(20): 4052-4056, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38738402

RESUMO

Stimuli-responsive upconversion nanoparticle (UCNP)-poly-N-isopropylacrylamide (pNIPAM)/DNA core-shell microgels with tunable sizes and programmable functions have been prepared. Thanks to the near-infrared (NIR)-responsive UCNP cores and thermosensitive polymeric shells, functional DNA-incorporated microgels with high DNA activity and loading efficiency are obtained, and the activity of the loaded DNA structures can be smartly regulated by NIR illumination and temperature simultaneously.

18.
Prostaglandins Other Lipid Mediat ; 171: 106816, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38302009

RESUMO

Coal workers' pneumoconiosis (CWP) is one of the most common inhalation occupational diseases. It is no effective treatment methods. Early diagnosis of CWP could reduce mortality. Lipid mediators (LMs) as key mediators in the generation and resolution of inflammation, are natural biomarkers for diagnosis inflammatory disease, such as CWP. The UHPLC-MRM technique was used to detect LMs in urine. The metabolic network of LMs in CWP and CT group samples was comprehensively analyzed. Screening for major difference compounds between the two groups. Aimed to contribute to the early diagnosis and treatment of CWP. Urinary levels of 13-OxoODE, 9-OxoODE, and 9,10-EpOME were significantly higher in the CWP group compared with the CT group (P < 0.05). In the model group, the area under the receiver operating characteristic (ROC) for 9-OxoODE,13-OxoODE,9,10-EpOME was 84.4%, 73.3%, and 80.9%, respectively. In the validation group, the area under the ROC was 87.0%, 88.8%, and 68.8% for 9-OxoODE,13-OxoODE,9,10-EpOME, respectively. According to the logistic regression model, the area under the ROC was 80.4% in the model group and 86.7% in the validation group. 13-OxoODE,9-OxoODE,9,10-EpOME could be used as biomarkers for early diagnosis. Significant abnormalities of LOX and CYP450 enzyme pathways were seen in CWP organisms. Changes in the CYP450 enzyme pathway may be associated with PAHs.


Assuntos
Antracose , Humanos , Antracose/diagnóstico , Inflamação , Biomarcadores
19.
BMC Infect Dis ; 24(1): 405, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622501

RESUMO

BACKGROUND: Genital infection with Chlamydia trachomatis (C. trachomatis) is a major public health issue worldwide. It can lead to cervicitis, urethritis, and infertility. This study was conducted to determine the characteristics of genital C. trachomatis infection among women attending to the infertility and gynecology clinics. METHODS: Endocervical swabs were collected from 8,221 women for C. trachomatis nucleotide screening and genotyping, while serum samples were collected for C. trachomatis pgp3 antibody determination using luciferase immunosorbent assays. RESULTS: High C. trachomatis DNA prevalence (3.76%) and seroprevalence (47.46%) rates were found, with genotype E (27.5%) being the most prevalent. C. trachomatis omp1 sense mutation was associated with cervical intraepithelial neoplasia (CIN) (odds ratio [OR] = 6.033, 95% confidence interval [CI] = 1.219-39.185, p = 0.045). No significant differences in C. trachomatis seroprevalence rates were observed between women with detectable C. trachomatis DNA in the infertility and routine physical examination groups (86.67% vs. 95%, p > 0.05); however, among women with negative C. trachomatis DNA, the former group had a markedly higher seroprevalence than the latter group (56.74% vs. 20.17%, p < 0.001). C. trachomatis DNA, but not pgp3 antibody, was significantly associated with CIN (OR = 4.087, 95% CI = 2.284-7.315, p < 0.001). CONCLUSION: Our results revealed a high prevalence, particularly seroprevalence, of C. trachomatis among women with infertility. Furthermore, we found an association between C. trachomatis omp1 sense mutations and CIN. Therefore, C. trachomatis serves as a risk factor for CIN.


Assuntos
Infecções por Chlamydia , Infertilidade , Humanos , Feminino , Chlamydia trachomatis/genética , Estudos Soroepidemiológicos , Infertilidade/epidemiologia , Infertilidade/complicações , Infecções por Chlamydia/diagnóstico , DNA , Genitália
20.
Environ Sci Technol ; 58(28): 12532-12541, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38940696

RESUMO

While partial nitrification (PN) has the potential to reduce energy for aeration, it has proven to be unstable when treating low-strength wastewater. This study introduces an innovative combined strategy incorporating a low rate of oxygen supply, pH control, and sulfide addition to selectively inhibit nitrite-oxidizing bacteria (NOB). This strategy led to a stable PN in a laboratory-scale membrane aerated biofilm reactor (MABR). Over a period of 260 days, the nitrite accumulation ratio exceeded 60% when treating synthetic sewage containing 50 mg NH4+-N/L. Through in situ activity testing and high-throughput sequencing, the combined strategy led to low levels of nitrite-oxidation activity (<5.5 mg N/m2 h), Nitrospira species (relative abundance <1%), and transcription of nitrite-oxidation genes (undetectable). The addition of sulfide led to simultaneous PN and autotrophic denitrification in the single-stage MABR, resulting in over 60% total inorganic nitrogen removal. Sulfur-based autotrophic denitrification consumed nitrite and inhibited NOB conversion of nitrite to nitrate. The combined strategy has potential to be applied in large-scale sewage treatment and deserves further exploration.


Assuntos
Reatores Biológicos , Desnitrificação , Nitrificação , Sulfetos , Sulfetos/química , Processos Autotróficos , Nitritos/metabolismo , Esgotos , Biofilmes , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA