Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(45): e2218499120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37910552

RESUMO

A hyperdiverse class of pathogens of humans and wildlife, including the malaria parasite Plasmodium falciparum, relies on multigene families to encode antigenic variation. As a result, high (asymptomatic) prevalence is observed despite high immunity in local populations under high-transmission settings. The vast diversity of "strains" and genes encoding this variation challenges the application of established models for the population dynamics of such infectious diseases. Agent-based models have been formulated to address theory on strain coexistence and structure, but their complexity can limit application to gain insights into population dynamics. Motivated by P. falciparum malaria, we develop an alternative formulation in the form of a structured susceptible-infected-susceptible population model in continuous time, where individuals are classified not only by age, as is standard, but also by the diversity of parasites they have been exposed to and retain in their specific immune memory. We analyze the population dynamics and bifurcation structure of this system of partial-differential equations, showing the existence of alternative steady states and an associated tipping point with transmission intensity. We attribute the critical transition to the positive feedback between parasite genetic diversity and force of infection. Basins of attraction show that intervention must drastically reduce diversity to prevent a rebound to high infection levels. Results emphasize the importance of explicitly considering pathogen diversity and associated specific immune memory in the population dynamics of hyperdiverse epidemiological systems. This statement is discussed in a more general context for ecological competition systems with hyperdiverse trait spaces.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Humanos , Modelos Epidemiológicos , Memória Imunológica , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Variação Genética
2.
Bioinformatics ; 40(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885409

RESUMO

MOTIVATION: Multi-strain infection is a common yet under-investigated phenomenon of many pathogens. Currently, biologists analyzing SNP information sometimes have to discard mixed infection samples as many downstream analyses require monogenomic inputs. Such a protocol impedes our understanding of the underlying genetic diversity, co-infection patterns, and genomic relatedness of pathogens. A scalable tool to learn and resolve the SNP-haplotypes from polygenomic data is an urgent need in molecular epidemiology. RESULTS: We develop a slice sampling Markov Chain Monte Carlo algorithm, named SNP-Slice, to learn not only the SNP-haplotypes of all strains in the populations but also which strains infect which hosts. Our method reconstructs SNP-haplotypes and individual heterozygosities accurately without reference panels and outperforms the state-of-the-art methods at estimating the multiplicity of infections and allele frequencies. Thus, SNP-Slice introduces a novel approach to address polygenomic data and opens a new avenue for resolving complex infection patterns in molecular surveillance. We illustrate the performance of SNP-Slice on empirical malaria and HIV datasets and provide recommendations for using our method on empirical datasets. AVAILABILITY AND IMPLEMENTATION: The implementation of the SNP-Slice algorithm, as well as scripts to analyze SNP-Slice outputs, are available at https://github.com/nianqiaoju/snp-slice.


Assuntos
Algoritmos , Haplótipos , Polimorfismo de Nucleotídeo Único , Humanos , Infecções por HIV/genética , Coinfecção , Malária/genética , Cadeias de Markov , Método de Monte Carlo , Frequência do Gene
3.
PLoS Comput Biol ; 19(1): e1010816, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36595546

RESUMO

At a time when effective tools for monitoring malaria control and eradication efforts are crucial, the increasing availability of molecular data motivates their application to epidemiology. The multiplicity of infection (MOI), defined as the number of genetically distinct parasite strains co-infecting a host, is one key epidemiological parameter for evaluating malaria interventions. Estimating MOI remains a challenge for high-transmission settings where individuals typically carry multiple co-occurring infections. Several quantitative approaches have been developed to estimate MOI, including two cost-effective ones relying on molecular data: i) THE REAL McCOIL method is based on putatively neutral single nucleotide polymorphism loci, and ii) the varcoding method is a fingerprinting approach that relies on the diversity and limited repertoire overlap of the var multigene family encoding the major Plasmodium falciparum blood-stage antigen PfEMP1 and is therefore under selection. In this study, we assess the robustness of the MOI estimates generated with these two approaches by simulating P. falciparum malaria dynamics under three transmission conditions using an extension of a previously developed stochastic agent-based model. We demonstrate that these approaches are complementary and best considered across distinct transmission intensities. While varcoding can underestimate MOI, it allows robust estimation, especially under high transmission where repertoire overlap is extremely limited from frequency-dependent selection. In contrast, THE REAL McCOIL often considerably overestimates MOI, but still provides reasonable estimates for low and moderate transmission. Regardless of transmission intensity, results for THE REAL McCOIL indicate that an inaccurate tail at high MOI values is generated, and that at high transmission, an apparently reasonable estimated MOI distribution can arise from some degree of compensation between overestimation and underestimation. As many countries pursue malaria elimination targets, defining the most suitable approach to estimate MOI based on sample size and local transmission intensity is highly recommended for monitoring the impact of intervention programs.


Assuntos
Malária Falciparum , Malária , Humanos , Plasmodium falciparum/genética , Malária Falciparum/parasitologia , Malária/parasitologia , Antígenos de Protozoários/genética , Repetições de Microssatélites , Variação Genética , Proteínas de Protozoários/genética
4.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33571106

RESUMO

The contributions of asymptomatic infections to herd immunity and community transmission are key to the resurgence and control of COVID-19, but are difficult to estimate using current models that ignore changes in testing capacity. Using a model that incorporates daily testing information fit to the case and serology data from New York City, we show that the proportion of symptomatic cases is low, ranging from 13 to 18%, and that the reproductive number may be larger than often assumed. Asymptomatic infections contribute substantially to herd immunity, and to community transmission together with presymptomatic ones. If asymptomatic infections transmit at similar rates as symptomatic ones, the overall reproductive number across all classes is larger than often assumed, with estimates ranging from 3.2 to 4.4. If they transmit poorly, then symptomatic cases have a larger reproductive number ranging from 3.9 to 8.1. Even in this regime, presymptomatic and asymptomatic cases together comprise at least 50% of the force of infection at the outbreak peak. We find no regimes in which all infection subpopulations have reproductive numbers lower than three. These findings elucidate the uncertainty that current case and serology data cannot resolve, despite consideration of different model structures. They also emphasize how temporal data on testing can reduce and better define this uncertainty, as we move forward through longer surveillance and second epidemic waves. Complementary information is required to determine the transmissibility of asymptomatic cases, which we discuss. Regardless, current assumptions about the basic reproductive number of severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) should be reconsidered.


Assuntos
Infecções Assintomáticas/epidemiologia , COVID-19/epidemiologia , COVID-19/transmissão , Número Básico de Reprodução , COVID-19/fisiopatologia , Surtos de Doenças , Humanos , Cidade de Nova Iorque/epidemiologia
5.
Sensors (Basel) ; 23(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37896677

RESUMO

Laser-based measurement and sensing technology has been paid more and more attention by academia and industry because of its incomparable advantages, such as high sensitivity, fast response, and no contact [...].

6.
Sensors (Basel) ; 23(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37177478

RESUMO

An optical sensor system based on wavelength modulation spectroscopy (WMS) was developed for atmospheric oxygen (O2) detection. A distributed feedback (DFB) laser with butterfly packaging was used to target the O2 absorption line at 760.89 nm. A compact multi-pass gas cell was employed to increase the effective absorption length to 3.3 m. To ensure the stability and anti-interference capability of the sensor in field measurements, the optical module was fabricated with isolation of ambient light and vibration design. A 1f normalized 2f WMS (WMS-2f/1f) technique was adopted to reduce the effect of laser power drift. In addition, a LabVIEW-based dual-channel lock-in amplifier was developed for harmonic detection, which significantly reduced the sensor volume and cost. The detailed detection principle was described, and a theoretical model was established to verify the effectiveness of the technique. Experiments were carried out to obtain the device's sensing performances. An Allan deviation analysis yielded a minimum detection limit of 0.054% for 1 s integration time that can be further improved to 0.009% at ~60 s. Finally, the reliability and anti-interference capability of the sensor system were verified by the atmospheric O2 monitoring.

7.
Sensors (Basel) ; 23(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37112257

RESUMO

Wheel flats are amongst the most common local surface defect in railway wheels, which can result in repetitive high wheel-rail contact forces and thus lead to rapid deterioration and possible failure of wheels and rails if not detected at an early stage. The timely and accurate detection of wheel flats is of great significance to ensure the safety of train operation and reduce maintenance costs. In recent years, with the increase of train speed and load capacity, wheel flat detection is facing greater challenges. This paper focuses on the review of wheel flat detection techniques and flat signal processing methods based on wayside deployment in recent years. Commonly used wheel flat detection methods, including sound-based methods, image-based methods, and stress-based methods are introduced and summarized. The advantages and disadvantages of these methods are discussed and concluded. In addition, the flat signal processing methods corresponding to different wheel flat detection techniques are also summarized and discussed. According to the review, we believe that the development direction of the wheel flat detection system is gradually moving towards device simplification, multi-sensor fusion, high algorithm accuracy, and operational intelligence. With continuous development of machine learning algorithms and constant perfection of railway databases, wheel flat detection based on machine learning algorithms will be the development trend in the future.

8.
Sensors (Basel) ; 23(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37112448

RESUMO

Using polarization-maintaining fiber (PMF) in dual-frequency heterodyne interferometry has the advantages of reducing the laser's own drift, obtaining high-quality light spots, and improving thermal stability. Using only one single-mode PMF to achieve the transmission of dual-frequency orthogonal, linearly polarized beam requires angular alignment only once to realize the transmission of dual-frequency orthogonal, linearly polarized light, avoiding coupling inconsistency errors, so that it has the advantages of high efficiency and low cost. However, there are still many nonlinear influencing factors in this method, such as the ellipticity and non-orthogonality of the dual-frequency laser, the angular misalignment error of the PMF, and the influence of temperature on the output beam of the PMF. This paper uses the Jones matrix to innovatively construct an error analysis model for the heterodyne interferometry using one single-mode PMF, to realize the quantitative analysis of various nonlinear error influencing factors, and clarify that the main error source is the angular misalignment error of the PMF. For the first time, the simulation provides a goal for the optimization of the alignment scheme of the PMF and the improvement of the accuracy to the sub-nanometer level. In actual measurement, the angular misalignment error of the PMF needs to be smaller than 2.87° to achieve sub-nanometer interference accuracy, and smaller than 0.25° to make the influence smaller than ten picometers. It provides theoretical guidance and an effective means for improving the design of heterodyne interferometry instruments based on PMF and further reducing measurement errors.

9.
PLoS Biol ; 17(6): e3000336, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31233490

RESUMO

In their competition for hosts, parasites with antigens that are novel to the host immune system will be at a competitive advantage. The resulting frequency-dependent selection can structure parasite populations into strains of limited genetic overlap. For the causative agent of malaria, Plasmodium falciparum, the high recombination rates and associated vast diversity of its highly antigenic and multicopy var genes preclude such clear clustering in endemic regions. This undermines the definition of strains as specific, temporally persisting gene variant combinations. We use temporal multilayer networks to analyze the genetic similarity of parasites in both simulated data and in an extensively and longitudinally sampled population in Ghana. When viewed over time, populations are structured into modules (i.e., groups) of parasite genomes whose var gene combinations are more similar within than between the modules and whose persistence is much longer than that of the individual genomes that compose them. Comparison to neutral models that retain parasite population dynamics but lack competition reveals that the selection imposed by host immunity promotes the persistence of these modules. The modular structure is, in turn, associated with a slower acquisition of immunity by individual hosts. Modules thus represent dynamically generated niches in host immune space, which can be interpreted as strains. Negative frequency-dependent selection therefore shapes the organization of the var diversity into parasite genomes, leaving a persistence signature over ecological time scales. Multilayer networks extend the scope of phylodynamics analyses by allowing quantification of temporal genetic structure in organisms that generate variation via recombination or other non-bifurcating processes. A strain structure similar to the one described here should apply to other pathogens with large antigenic spaces that evolve via recombination. For malaria, the temporal modular structure should enable the formulation of tractable epidemiological models that account for parasite antigenic diversity and its influence on intervention outcomes.


Assuntos
Variação Antigênica/imunologia , Interações Hospedeiro-Parasita/imunologia , Plasmodium falciparum/imunologia , Animais , Variação Antigênica/genética , Análise por Conglomerados , Evolução Molecular , Variação Genética/genética , Humanos , Malária Falciparum/epidemiologia , Parasitos/imunologia , Parasitos/patogenicidade , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
10.
PLoS Comput Biol ; 17(2): e1008729, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33606682

RESUMO

In malaria and several other important infectious diseases, high prevalence occurs concomitantly with incomplete immunity. This apparent paradox poses major challenges to malaria elimination in highly endemic regions, where asymptomatic Plasmodium falciparum infections are present across all age classes creating a large reservoir that maintains transmission. This reservoir is in turn enabled by extreme antigenic diversity of the parasite and turnover of new variants. We present here the concept of a threshold in local pathogen diversification that defines a sharp transition in transmission intensity below which new antigen-encoding genes generated by either recombination or migration cannot establish. Transmission still occurs below this threshold, but diversity of these genes can neither accumulate nor recover from interventions that further reduce it. An analytical expectation for this threshold is derived and compared to numerical results from a stochastic individual-based model of malaria transmission that incorporates the major antigen-encoding multigene family known as var. This threshold corresponds to an "innovation" number we call Rdiv; it is different from, and complementary to, the one defined by the classic basic reproductive number of infectious diseases, R0, which does not readily is better apply under large and dynamic strain diversity. This new threshold concept can be exploited for effective malaria control and applied more broadly to other pathogens with large multilocus antigenic diversity.


Assuntos
Variação Antigênica , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Animais , Antígenos , Número Básico de Reprodução , Simulação por Computador , Epitopos/química , Interações Hospedeiro-Parasita , Humanos , Malária , Malária Falciparum/transmissão , Modelos Estatísticos , Família Multigênica , Proteínas de Protozoários/genética , Processos Estocásticos
11.
Sensors (Basel) ; 21(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34695929

RESUMO

Line-structured light has been widely used in the field of railway measurement, owing to its high capability of anti-interference, fast scanning speed and high accuracy. Traditional calibration methods of line-structured light sensors have the disadvantages of long calibration time and complicated calibration process, which is not suitable for railway field application. In this paper, a fast calibration method based on a self-developed calibration device was proposed. Compared with traditional methods, the calibration process is simplified and the calibration time is greatly shortened. This method does not need to extract light strips; thus, the influence of ambient light on the measurement is reduced. In addition, the calibration error resulting from the misalignment was corrected by epipolar constraint, and the calibration accuracy was improved. Calibration experiments in laboratory and field tests were conducted to verify the effectiveness of this method, and the results showed that the proposed method can achieve a better calibration accuracy compared to a traditional calibration method based on Zhang's method.

12.
Sensors (Basel) ; 20(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887346

RESUMO

Railway wheel tread flat is one of the main faults of railway wheels, which brings great harm to the safety of vehicle operation. In order to detect wheel flats dynamically and quantitatively when trains are running at high speed, a new wheel flat detection system based on the self-developed reflective optical position sensor is demonstrated in this paper. In this system, two sensors were mounted along each rail to measure the wheel-rail impact force of the entire circumference by detecting the displacement of the collimated laser spot. In order to establish a quantitative relationship between the sensor signal and the wheel flat length, a vehicle-track coupling dynamics analysis model was developed using the finite element method and multi-body dynamics method. The effects of train speed, load, wheel flat lengths, as well as the impact positions on impact forces were simulated and evaluated, and the measured data can be normalized according to the simulation results. The system was assessed through simulation and laboratory investigation, and real field tests were conducted to certify its validity and correctness. The system can determine the position of the flat wheel and can realize the quantification of the detected wheel flat, which has extensive application prospects.

13.
Sensors (Basel) ; 20(5)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131489

RESUMO

At present, the method of two-dimensional image recognition is mainly used to detect the abnormal fastener in the rail-track inspection system. However, the too-tight-or-too-loose fastener condition may cause the clip of the fastener to break or loose due to the high frequency vibration shock, which is difficult to detect from the two-dimensional image. In this practical application background, 3D visual detection technology provides a feasible solution. In this paper, we propose a fundamental multi-source visual data detection method, as well as an accurate and robust fastener location and nut or bolt segmentation algorithm. By combining two-dimensional intensity information and three-dimensional depth information generated by the projection of line structural light, the locating of nut or bolt position and accurate perception of height information can be realized in the dynamic running environment of railway. The experimental results show that the static measurement accuracy in the vertical direction using the structural light vision sensor is 0.1 mm under the laboratory condition, and the dynamic measurement accuracy is 0.5 mm under the dynamic train running environment. We use dynamic template matching algorithm to locate fasteners from 2D intensity map, which achieves 99.4% accuracy, then use the watershed algorithm to segment the nut and bolt from the corresponding depth image of located fastener. Finally, the 3D shape of the nut and bolt is analyzed to determine whether the nut or bolt height meets the local statistical threshold requirements, so as to detect the hidden danger of railway transportation caused by too loose or too tight fasteners.

14.
Sensors (Basel) ; 19(16)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434249

RESUMO

Wheel flats are a key fault in railway systems, which can bring great harm to vehicle operation safety. At present, most wheel flat detection methods use qualitative detection and do not meet practical demands. In this paper, we used a railway wheel flat measurement method based on a parallelogram mechanism to detect wheel flats dynamically and quantitatively. Based on our experiments, we found that system performance was influenced by the train speed. When the train speed was higher than a certain threshold, the wheel impact force would cause vibration of the measuring mechanism and affect the detection accuracy. Since the measuring system was installed at the on-site entrance of the train garage, to meet the speed requirement, a three-dimensional simulation model was established, which was based on the rigid-flexible coupled multibody dynamics theory. The speed threshold of the measuring mechanism increased by the reasonable selection of the damping coefficients of the hydraulic damper, the measuring positions, and the downward displacements of the measuring ruler. Finally, we applied the selected model parameters to the parallelogram mechanism, where field measurements showed that the experimental results were consistent with the simulation results.

15.
Sensors (Basel) ; 19(3)2019 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-30691128

RESUMO

A trace acetylene (C2H2) detection system was demonstrated using the cavity-enhanced absorption spectroscopy (CEAS) technique and a near-infrared distributed feedback (NIR-DFB) laser. A Fabry⁻Perot (F⁻P) cavity with an effective optical path length of 49.7 m was sealed and employed as a gas absorption cell. Co-axis cavity alignment geometry was adopted to acquire a larger transmitted light intensity and a higher sensitivity compared with off-axis geometry. The laser frequency was locked to the cavity fundamental mode (TEM00 mode) by using the Pound⁻Drever⁻Hall (PDH) technique continuously. By introducing a cavity length-locking loop, the drift of the cavity length was suppressed, and the stability of the system was enhanced. To demonstrate the efficacy of the system, a C2H2 absorption spectrum near 6534.36 cm-1 was acquired by tuning the laser operation temperature. Measurements of C2H2 samples with different concentrations were carried out, and a good linear relationship between C2H2 concentration and the cavity-transmitted signal voltage was observed. The measurement results showed the system could work stably for more than 2 h without major fluctuations. The Allan variance analysis results demonstrated a detection limit of 9 parts-per-billion (ppb) with an averaging time of 11 s corresponding to a minimum detectable absorption coefficient of 1.1 × 10-8 cm-1.

16.
Opt Express ; 26(12): 15436-15444, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114805

RESUMO

A mid-infrared cavity-enhanced sensor system was demonstrated for the detection of formaldehyde (H2CO) using a continuous-wave (cw) interband cascade laser (ICL) centered at 3599 nm. A compact Fabry-Perot (F-P) cavity with a physical size of 38 × 52 × 76 mm3 was developed consisting of two concave mirrors with a radius of curvature of 80 mm and a reflectivity of 99.8% at 3.6 µm. Different from the widely reported electro-optical (EO) external modulation based Pound-Drever-Hall (PDH) locking technique, a radio-frequency electrical internal modulation based PDH technique was used for locking the laser mode to the cavity mode. A dual-feedback control on the laser current and on the piezo transducer (PZT) displacement was utilized for further stabilizing mode locking. A 20 m effective optical path length was achieved with a cavity length of 2 cm and a finesse of 1572. The effectiveness and sensitivity of the sensor system were demonstrated by targeting an absorption line at 2778.5 cm-1 for H2CO measurements. A linear relation between the cavity transmitted signal amplitude and the H2CO concentration was obtained within the range of 0-5 ppm. A 1σ detection limit of 25 parts-per-billion (ppb) was achieved with an averaging time of 1 s based on Allan-Werle variance analysis. The reported dual-feedback RF modulation based PDH technique led to a method for gas detection using a similar experimental setup and measurement scheme.

17.
Opt Express ; 26(20): 26205-26216, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469711

RESUMO

For highly sensitive and accurate acetylene (C2H2) detection, a near-infrared (NIR) off-axis integrated-cavity output spectroscopy (OA-ICOS) sensor system based on an ultra-compact cage-based absorption cell was proposed. The absorption cell with dimensions of 10 cm × 8 cm × 6 cm realized a dense-pattern and an easily-aligned stable optical system. The OA-ICOS sensor system employed a 6cm-long optical cavity that was formed by two mirrors with a reflectivity of 99.35% and provided an effective absorption path length of ∼9.28 m. The performance of the C2H2 sensor system based on two measurement schemes, i.e. laser direct absorption spectroscopy (LDAS) and wavelength modulation spectroscopy (WMS) is reported. A NIR distributed feedback (DFB) laser was employed for targeting a C2H2 absorption line at 6523.88 cm-1. An Allan deviation analysis yielded a detection sensitivity of 760 parts-per-billion in volume (ppbv) for an averaging time of 304 s using the LDAS-based OA-ICOS. A detection sensitivity of 85 ppbv for an averaging time of 250 s was obtained using the WMS-based OA-ICOS, which was further improved by a factor of ~9 compared to the result obtained with the LDAS method. The proposed sensor system has the advantages of reduced size and cost with acceptable detection sensitivity, which is suitable for applications in trace gas sensing in harsh environments and weight-limited balloon-embedded observations.

19.
Analyst ; 143(19): 4699-4706, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30183029

RESUMO

The majority of broadband cavity-enhanced systems are used to detect trace gas species in the visible spectral range. We demonstrated a broadband cavity-enhanced sensor system in combination with a Fourier-transform spectrometer (FTS) in the near-infrared (near-IR) region for methane (CH4) detection. Light from a tungsten-halogen lamp was coupled into a high-finesse cavity and the light leaking from the cavity was imaged onto the FTS. An optimal incident beam diameter of 2.25 cm was required in the condition of a 40 cm-long cavity of a 2.5 cm diameter and a 100 cm radius of curvature (RoC) mirror. The CH4 sensor system was capable of operating at a temperature of 300 K and 1 atm gas pressure. Based on an Allan variance analysis, a minimum detectable absorption coefficient of 4.6 × 10-7 cm-1 was achieved. A wavelet denoising (WD) method was introduced in the retrieval of the gas concentration, which improved the measurement precision from 10.2 parts-per-million in volume (ppmv) to 5.3 ppmv with an enhancement factor of 2 for a 20 min averaging time. The near-IR broadband cavity-enhanced sensor system can also be used to measure high-resolution absorption spectra of other atmospheric trace gas species.

20.
Mol Ecol ; 26(24): 6908-6920, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29044712

RESUMO

Climatic or environmental change is not only driving distributional shifts in species today, but it has also caused distributions to expand and contract in the past. Inferences about the geographic locations of past populations especially regions that served as refugia (i.e., source populations) and migratory routes are a challenging endeavour. Refugial areas may be evidenced from fossil records or regions of temporal stability inferred from ecological niche models. Genomic data offer an alternative and broadly applicable source of information about the locality of refugial areas, especially relative to fossil data, which are either unavailable or incomplete for most species. Here, we present a pipeline we developed (called x-origin) for statistically inferring the geographic origin of range expansion using a spatially explicit coalescent model and an approximate Bayesian computation testing framework. In addition to assessing the probability of specific latitudinal and longitudinal coordinates of refugial or source populations, such inferences can also be made accounting for the effects of temporal and spatial environmental heterogeneity, which may impact migration routes. We demonstrate x-origin with an analysis of genomic data collected in the Collared pika that underwent postglacial expansion across Alaska, as well as present an assessment of its accuracy under a known model of expansion to validate the approach.


Assuntos
Genética Populacional , Modelos Genéticos , Refúgio de Vida Selvagem , Alaska , Animais , Teorema de Bayes , Mudança Climática , Simulação por Computador , Ecossistema , Fósseis , Variação Genética , Lagomorpha/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA