RESUMO
OBJECTIVES: This study aimed to evaluate the prognostic significance of postoperative Creatine Kinase type M and B (CK-MB) to total Creatine Kinase (CK) ratio (CK-MB/CK) in colorectal cancer (CRC) patients after radical resection. METHODS: This was a single-center retrospective cohort analysis. Subjects were stage I-III CRC patients hospitalized in Sichuan Cancer Hospital from January 2017 to May 2021. Patients were divided into abnormal group and normal group according to whether the CK-MB/CK ratio was abnormal after surgery. Through a comparative analysis of clinical data, laboratory test results, and prognosis differences between the two groups, we aimed to uncover the potential relationship between abnormal CK-MB > CK results and CRC patients. To gauge the impact of CK-MB/CK on overall survival (OS) and disease-free survival (DFS), we employed the multivariable COX regression and LASSO regression analysis. Additionally, Spearman correlation analysis, logistic regression, and receiver-operating characteristic (ROC) curve analysis were conducted to assess the predictive value of the CK-MB/CK ratio for postoperative liver metastasis. RESULTS: Cox regression analysis revealed that the CK-MB/CK ratio was a stable risk factors for OS (HR = 3.82, p < 0.001) and DFS (HR = 2.31, p < 0.001). To distinguish hepatic metastases after surgery, the ROC area under the curve of CK-MB/CK was 0.697 (p < 0.001), and the optimal cut-off value determined by the Youden index was 0.347. CONCLUSIONS: Postoperative abnormal CK-MB/CK ratio predicts worse prognosis in CRC patients after radical resection and serves as a useful biomarker for detecting postoperative liver metastasis.
Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/cirurgia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/sangue , Neoplasias Colorretais/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Idoso , Biomarcadores Tumorais/sangue , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/mortalidade , Creatina Quinase/sangue , Creatina Quinase Forma MB/sangue , Curva ROC , Adulto , Intervalo Livre de DoençaRESUMO
Cardiovascular disease (CVD) has a high incidence and low cure rate worldwide, and atherosclerosis (AS) is the main factor inducing cardiovascular disease, of which lipid deposition in the vessel wall is the main marker of AS. Currently, although statins can be used to lower lipids and low-density lipoprotein (LDL) in AS, the cure rate for AS remains low. Therefore, there is an urgent need to develop new therapeutic approaches, and stem cells are now widely studied, while stem cells are a class of cell types that always maintain the ability to differentiate and can differentiate to form other cells and tissues, and stem cell transplantation techniques have shown efficacy in the treatment of other diseases. With the establishment of cellular therapies and continued research in stem cell technology, stem cells are also being used to address the problem of AS. In this paper, we focus on recent research advances in stem cell therapy for AS and briefly summarize the relevant factors that induce the formation of AS. We mainly discuss the efficacy and application prospects of mesenchymal stem cells (MSCs) for the treatment of AS, in addition to the partial role and potential of exosomes in the treatment of AS. Further, provide new ideas for the clinical application of stem cells.
Assuntos
Aterosclerose , Doenças Cardiovasculares , Exossomos , Transplante de Células-Tronco Mesenquimais , Humanos , Doenças Cardiovasculares/metabolismo , Transplante de Células-Tronco , Aterosclerose/terapia , Aterosclerose/metabolismo , Exossomos/metabolismo , Terapia Baseada em Transplante de Células e TecidosRESUMO
Long non-coding RNAs (lncRNAs) are a class of non-coding RNA with a length greater than 200â nt. It has a mRNA-like structure, formed by splicing after transcription, and contains a polyA tail and a promoter, of whom promoter plays a role by binding transcription factors. LncRNAs' sequences are low in conservation, and other species can only find a handful of the same lncRNAs as humans, and there are different splicing ways during the differentiation of identical species, with spatiotemporal expression specificity. With developing high-throughput sequencing and bioinformatics, found that more and more lncRNAs associated with nervous system disease. This article deals with the regulation of certain lncRNAs in the nervous system disease, by mean of to understand its mechanism of action, and the pathogenesis of some neurological diseases have a fresh understanding, deposit a foundation for resulting research and clinical treatment of disease.
Assuntos
MicroRNAs , Doenças do Sistema Nervoso , RNA Longo não Codificante , Biologia Computacional/métodos , Redes Reguladoras de Genes , Humanos , MicroRNAs/metabolismo , Doenças do Sistema Nervoso/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismoRESUMO
Radioactive uranium wastewater contains a large amount of radionuclide uranium and other heavy metal ions. The radioactive uranium wastewater discharged into the environment will not only pollute the natural environment, but also threat human health. Therefore, the treatment of radioactive uranium wastewater is a current research focus for many researchers. The treatment in radioactive uranium wastewater mainly includes physical, chemical and biological methods. At present, the using of biological treatment to treat uranium in radioactive uranium wastewater has been gradually shown its superiority and advantages. Deinococcus radiodurans is a famous microorganism with the most radiation resistant to ionizing radiation in the world, and can also resist various other extreme pressures. D. radiodurans can be directly used for the adsorption of uranium in radioactive waste water, and it can also transform other functional genes into D. radiodurans to construct genetically engineered bacteria, and then applied to the treatment of radioactive uranium containing wastewater. Radionuclides uranium in radioactive uranium-containing wastewater treated by D. radiodurans involves a lot of mechanisms. This article reviews currently the application of D. radiodurans that directly or construct genetically engineered bacteria in the treatment of radioactive uranium wastewater and discusses the mechanism of D. radiodurans in bioremediation of uranium. The application of constructing an engineered bacteria of D. radiodurans with powerful functions in uranium-containing wastewater is prospected.
RESUMO
The discovery of epidermal growth factor receptor (EGFR) mutations has made EGFR tyrosine kinase inhibitors (EGFR-TKIs) a milestone in the treatment for advanced non-small cell lung cancer (NSCLC). However, patients lacking EGFR mutations are not sensitive to EGFR-TKI treatment and the emergence of secondary resistance poses new challenges for the targeted therapy of lung cancer. In this study, we identified that the expression of membrane progesterone receptor α (mPRα) was associated with EGFR mutations in lung adenocarcinoma patients and subsequently affected the efficacy of EGFR-TKIs. Progesterone (P4) or its derivative Org OD02-0 (Org), which is mediated by mPRα, increases the function of EGFR-TKIs to suppress the proliferation, migration, and invasion of lung adenocarcinoma cells in vitro and in vivo. In addition, the mPRα pathway triggers delayed resistance to EGFR-TKIs. Mechanistic investigations demonstrated that the mPRα pathway can crosstalk with the EGFR pathway by activating nongenomic effects to inhibit the EGFR-SRC-ERK1/2 pathway, thereby promoting antitumorigenic effects. In conclusion, our data describe an essential role for mPRα in improving sensitivity to EGFR-TKIs, thus rationalizing its potential as a therapeutic target for lung adenocarcinomas.
Assuntos
Adenocarcinoma/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Gefitinibe/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Progesterona/farmacologia , Receptores de Progesterona/metabolismo , Células A549 , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Mutação , Progesterona/análogos & derivados , Inibidores de Proteínas Quinases/farmacologia , Receptores de Progesterona/genética , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Quinases da Família src/metabolismoRESUMO
Nuclear factor I/B (NFIB) is a widely studied transcription factor that participates in tumor progression; nevertheless, studies on NFIB in colorectal cancer (CRC) are limited. In our study, Western blot and RT-PCR analyses showed that NFIB was overexpressed in CRC tissues and cell lines, which was consistent with our bioinformatic analysis results. Furthermore, NFIB expression was closely related to the TNM stage of CRC. NFIB promoted cell proliferation and migration and inhibited cell apoptosis in vitro. Meanwhile, we discovered that NFIB accelerated xenograft tumor growth in vivo. In addition, NFIB weakened the sensitivity of CRC cells to 5-fluorouracil (5-FU). NFIB induced epithelial-mesenchymal transition (EMT) by upregulating snail expression, which was accompanied by decreased E-cadherin and Zo-1 expression and increasedd Vimentin expression. Because the Akt pathway plays an important role in CRC progression, we examined whether there was a correlation between NFIB and the Akt pathway in cell proliferation and migration. Our results showed that NFIB promoted cell proliferation and increased 5-FU resistance by activating the Akt pathway. In summary, our findings suggested that NFIB induced EMT of CRC cells via upregulating snail expression and promoted cell proliferation and 5-FU resistance by activating the Akt pathway.
Assuntos
Proliferação de Células/genética , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Fluoruracila/farmacologia , Fatores de Transcrição NFI/genética , Animais , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/terapia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Fatores de Transcrição NFI/metabolismo , Interferência de RNA , Terapêutica com RNAi/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
Prolonged exercise and exercise training can adversely affect cardiac function in some individuals. QiShenYiQi Pills (QSYQ), which are a compound Chinese medicine, have been previously shown to improve pressure overload-induced cardiac hypertrophy. We hypothesized that QSYQ can ameliorate as well the fatigue-induced cardiac hypertrophy. This study was to test this hypothesis and underlying mechanism with a focus on its role in energy regulation. Male Sprague-Dawley rats were used to establish exercise adaptation and fatigue model on a motorized rodent treadmill. Echocardiographic analysis and heart function test were performed to assess heart systolic function. Food-intake weight/body weight and heart weight/body weight were assessed, and hematoxylin and eosin staining and immunofluorescence staining of myocardium sections were performed. ATP synthase expression and activity and ATP, ADP, and AMP levels were assessed using Western blot and ELISA. Expression of proteins related to energy metabolism and IGF-1R signaling was determined using Western blot. QSYQ attenuated the food-intake weight/body weight decrease, improved myocardial structure and heart function, and restored the expression and distribution of myocardial connexin 43 after fatigue, concomitant with an increased ATP production and a restoration of metabolism-related protein expression. QSYQ upgraded the expression of IGF-1R, P-AMPK/AMPK, peroxisome proliferator-activated receptor-γ coactivator-1α, nuclear respiratory factor-1, P-phosphatidylinositol 3-kinase (PI3K)/PI3K, and P-Akt/Akt thereby attenuated the dysregulation of IGF-1R signaling after fatigue. QSYQ relieved fatigue-induced cardiac hypertrophy and enhanced heart function, which is correlated with its potential to improve energy metabolism by regulating IGF-1R signaling. NEW & NOTEWORTHY Prolonged exercise may impact some people leading to pathological cardiac hypertrophy. This study using an animal model of fatigue-induced cardiac hypertrophy provides evidence showing the potential of QiShenYiQi Pills, a novel traditional Chinese medicine, to prevent the cardiac adaptive hypertrophy from development to pathological hypertrophy and demonstrates that this effect is correlated with its capacity for regulating energy metabolism through interacting with insulin-like growth factor-1 receptor.
Assuntos
Fármacos Cardiovasculares/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Metabolismo Energético/efeitos dos fármacos , Fadiga/tratamento farmacológico , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Fadiga/complicações , Fadiga/metabolismo , Fadiga/fisiopatologia , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Miócitos Cardíacos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Receptor IGF Tipo 1/metabolismo , Transdução de SinaisRESUMO
Deinococcus radiodurans has attracted a great interest in the past decades due to its extraordinary resistance to ionizing radiation and highly efficient DNA repair system. Recent studies indicated that pprM is a putative pleiotropic gene in D. radiodurans and plays an important role in radioresistance and antioxidation, but its underlying mechanisms are poorly elucidated. In this study, pprM mutation was generated to investigate resistance to desiccation and oxidative stress. The result showed that the survival of pprM mutant under desiccation was markedly retarded compared to the wild strain from day 7-28. Furthermore, knockout of pprM increases the intercellular accumulation of ROS and the sensibility to H2O2 stress in the bacterial growth inhibition assay. The absorbance spectrum experiment for detecting the carotenoid showed that deinoxanthin, a carotenoid that peculiarly exists in Deinococcus, was reduced in the pprM mutant in the pprM mutant. Quantitative real time PCR showed decreased expression of three genes viz. CrtI (DR0861, 50%),CrtB (DR0862, 40%) and CrtO (DR0093, 50%), which are involved in deinoxanthin synthesis, and of Dps (DNA protection during starving) gene (DRB0092) relevant to ion combining and DNA protection in cells. Our results suggest that pprM may affect antioxidative ability of D. radiodurans by regulating the synthesis of deinoxanthin and the concentration of metal ions. This may provide new clues for the treatment of antioxidants.
RESUMO
Deinococcus radiodurans was considered as one of the most radiation-resistant organisms on Earth because of its strong resistance to the damaging factors of both DNA and protein, including ionizing radiation, ultraviolet radiation, oxidants, and desiccation. PprM, as a bacterial cold shock protein homolog, was involved in the radiation resistance and oxidative stress response of D. radiodurans, but its potential mechanisms are poorly expounded. In this study, we found that PprM was highly conserved with the RNA-binding domain in Deinococcus genus through performing phylogenic analysis. Moreover, the paper presents the analysis on the tolerance of environmental stresses both in the wild-type and the pprM/pprM RBD mutant strains, demonstrating that pprM and RNA-binding domain disruptant strain were with higher sensitivity than the wild-type strain to cold stress, mitomycin C, UV radiation, and hydrogen peroxide. In the following step, the recombinant PprM was purified, with the finding that PprM was bound to the 5'-untranslated region of its own mRNA by gel mobility shift assay in vitro. With all these findings taken into consideration, it was suggested that PprM act as a cold shock protein and its RNA-binding domain may be involved in reaction to the extreme environmental stress in D. radiodurans.
RESUMO
The absence of fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS), which is the leading cause of hereditary mental retardation. Fragile X-related protein 1 (FXR1P), which plays an important role in normal muscle development, is one of the two autosomal paralogs of FMRP. To understand the functions of FXR1P, we screened FXR1P-interacting proteins by using a yeast two-hybrid system. The fragile X-related gene 1 (FXR1) was fused to pGBKT7 and then used as the bait to screen the human fetal brain cDNA library. The screening results revealed 10 FXR1P-interacting proteins including Bcl-2-associated transcription factor 1 (BTF). The interaction between FXR1P and BTF was confirmed by using both ß-galactosidase assay and growth test in selective media. Co-immunoprecipitation assay in mammalian cells was also carried out to confirm the FXR1P/BTF interaction. Moreover, we confirmed that BTF co-localized with FXR1P in the cytoplasm around the nucleus in rat vascular smooth muscle cells by using confocal fluorescence microscopy. These results provide clues to elucidate the relationship between FXR1P and FXS.
Assuntos
Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Citoplasma/metabolismo , Humanos , Imunoprecipitação , Músculo Liso Vascular/citologia , Mapas de Interação de Proteínas , Ratos , Técnicas do Sistema de Duplo-HíbridoRESUMO
Biosensors have emerged as ideal analytical devices for various bio-applications owing to their low cost, convenience, and portability, which offer great potential for improving global healthcare. DNA self-assembly techniques have been enriched with the development of innovative amplification strategies, such as dispersion-to-localization of catalytic hairpin assembly, and dumbbell hybridization chain reaction, which hold great significance for building biosensors capable of realizing sensitive, rapid and multiplexed detection of pathogenic microorganisms. Here, focusing primarily on the signal amplification strategies based on DNA self-assembly, we concisely summarized the strengths and weaknesses of diverse isothermal nucleic acid amplification techniques. Subsequently, both single-layer and cascade amplification strategies based on traditional catalytic hairpin assembly and hybridization chain reaction were critically explored. Furthermore, a comprehensive overview of the recent advances in DNA self-assembled biosensors for the detection of pathogenic microorganisms is presented to summarize methods for biorecognition and signal amplification. Finally, a brief discussion is provided about the current challenges and future directions of DNA self-assembled biosensors.
Assuntos
Técnicas Biossensoriais , DNA , DNA/genética , Hibridização de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Catálise , Limite de DetecçãoRESUMO
Objective: It's crucial to identify an easily detectable biomarker that is specific to radiation injury in order to effectively classify injured individuals in the early stage in large-scale nuclear accidents. Methods: C57BL/6J mice were subjected to whole-body and partial-body γ irradiation, as well as whole-body X-ray irradiation to explore the response of serum sSelectin-L to radiation injury. Then, it was compared with its response to lipopolysaccharide-induced acute infection and doxorubicin-induced DNA damage to study the specificity of sSelectin-L response to radiation. Furthermore, it was further evaluated in serum samples from nasopharyngeal carcinoma patients before and after radiotherapy. Simulated rescue experiments using Amifostine or bone marrow transplantation were conducted in mice with acute radiation syndrome to determine the potential for establishing sSelectin-L as a prognostic marker. The levels of sSelectin-L were dynamically measured using the ELISA method. Results: Selectin-L is mainly expressed in hematopoietic tissues and lymphatic tissues. Mouse sSelectin-L showed a dose-dependent decrease from 1 day after irradiation and exhibited a positive correlation with lymphocyte counts. Furthermore, the level of sSelectin-L reflected the degree of radiation injury in partial-body irradiation mice and in nasopharyngeal carcinoma patients. sSelectin-L was closely related to the total dose of γ or X ray. There was no significant change in the sSelectin-L levels in mice intraperitoneal injected with lipopolysaccharide or doxorubicin. The sSelectin-L was decreased slower and recovered faster than lymphocyte count in acute radiation syndrome mice treated with Amifostine or bone marrow transplantation. Conclusions: Our study shows that sSelectin-L has the potential to be an early biomarker to classify injured individuals after radiation accidents, and to be a prognostic indicator of successful rescue of radiation victims.
RESUMO
This single-arm phase 2 trial (ChiCTR2100046715) examined previously untreated patients with advanced esophageal squamous cell carcinoma (ESCC) who received four cycles of paclitaxel with carboplatin every 3 weeks. Toripalimab was infused intravenously every 3 weeks for 12 months, or until disease progression or intolerable toxicity. Radiotherapy that encompassed the primary lesions and metastases commenced in the third cycle. The median progression-free survival time was 9.8 months (95% confidence interval [CI]: 6.8-not estimable) in the intent-to-treat population, failing to meet the pre-specified primary endpoints. Secondary endpoints included an objective response rate of 45.5%, a disease control rate of 57.6%, and a median duration of response of 11.5 months (interquartile range, 6.4-15.0). The 1-year progression-free survival and overall survival rates were 41.9% (95% CI: 27.7-63.5) and 69.7% (95% CI: 55.7-87.3), respectively. Lymphopenia was the most frequent grade ≥3 adverse event (82%), and an esophageal fistula developed in three patients (9.1%). No treatment-related deaths occurred. In prespecified exploratory biomarker analysis, higher densities of CD8 + T cells, CD11c+ dendritic cells, and CD68+ macrophages correlated with improved tumor response and prognosis. Radiotherapy supplementation to first-line chemo-immunotherapy for treatment-naive advanced ESCC demonstrated some antitumor activity and manageable safety profiles, warranting further randomized controlled trials.
Assuntos
Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Masculino , Feminino , Carcinoma de Células Escamosas do Esôfago/terapia , Carcinoma de Células Escamosas do Esôfago/radioterapia , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/mortalidade , Pessoa de Meia-Idade , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/tratamento farmacológico , Idoso , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Paclitaxel/uso terapêutico , Paclitaxel/administração & dosagem , Carboplatina/uso terapêutico , Carboplatina/administração & dosagem , Intervalo Livre de Progressão , Quimiorradioterapia/métodos , AdultoRESUMO
Long-wavelength broadband near-infrared (NIR) phosphors have attracted considerable interest in the fields of medical cosmetology and organic detection because of their special emission band. Herein, Ca2GeO4(CGO): Cr4+ NIR phosphor, presenting a broadband emission with longer wavelength ranging from 1100 to 1600 nm, has been synthesized. Further, the luminescence intensity and quantum efficiency of Cr4+ could be obviously improved via the energy transfer from Eu3+ to Cr4+. The energy transfer is dominated by the dipole-dipole mechanism, which can be inferred from the spectra and the decay curves. Furthermore, in order to evaluate the potential application, an NIR phosphor-converted light-emitting diode (pc-LED) based on blue chip has been prepared. Consequently, CGO: Eu3+, Cr4+ exhibits proper output power and wider half-width than the NIR LED chip, indicating its great prospect for long-wavelength NIR pc-LED applications.
RESUMO
It has been proved that Raman spectral intensities could be used to diagnose lung cancer patients. However, the application of Raman spectroscopy in identifying the patients with pulmonary nodules was barely studied. In this study, we revealed that Raman spectra of serum samples from healthy participants and patients with benign and malignant pulmonary nodules were significantly different. A support vector machine (SVM) model was developed for the classification of Raman spectra with wave points, according to ANOVA test results. It got a good performance with a median area under the curve (AUC) of 0.89, when the SVM model was applied in discriminating benign from malignant individuals. Compared with three common clinical models, the SVM model showed a better discriminative ability and added more net benefits to participants, which were also excellent in the small-size nodules. Thus, the Raman spectroscopy could be a less-invasive and low-costly liquid biopsy.
RESUMO
Due to the complexity of compositions and low abundance of target in clinical sample, nucleic acids detection often suffers from false positives caused by nonspecific amplification. In in vitro diagnosis (IVD), PCR usually employ TaqMan probe to report specific signals and block false positive signals. However, nucleic acid isothermal amplifications, such as loop-mediated isothermal amplification (LAMP), lack of mature specific signal output mechanism, which prevents them from being used for IVD and point-of-care testing (POCT). In this work, we constructed a specific signal extract-to-output isothermal detection system (SSEI). SSEI contains a well-designed DNA probe for specific signal extraction and output in LAMP. This probe is a double-stranded DNA with an overhang sequence and named as extract-to-output probe (ETO probe). ETO probe can recognize the target-specific intermediate products in LAMP and release another signal-output probe (OP) to report the target-specific signals. With these unique properties, SSEI can detect as low as 10 copies of target DNA per reaction either by fluorescence detector or naked eyes. Moreover, due to the excellent performance against background nucleic acids interference, this biosensing platform had been successfully used for hepatitis B virus (HBV) clinical samples detection.
Assuntos
Ácidos Nucleicos , Colorimetria , Técnicas de Amplificação de Ácido Nucleico , DNA/genética , Sondas de DNA , Reação em Cadeia da Polimerase , Sensibilidade e EspecificidadeRESUMO
Purpose: In patients with resectable esophageal squamous cell carcinoma (ESCC), neoadjuvant therapy increased the curative resection rate, disease-free survival, and overall survival for patients with resectable ESCC. However, the efficacy of neoadjuvant therapy varies among different patients. We aim to compare the differences in the characteristics of peripheral blood T lymphocyte subsets before and after neoadjuvant therapy in patients with different curative efficacy. Method: This study enrolled 266 ESCC patients who received neoadjuvant therapy and esophagectomy from August 2018 to August 2022. The postoperative pathological results divided patients into the major pathological response (MPR) and non-MPR groups. Compare the differences in peripheral blood T lymphocyte subsets and analyze the trend of changes in T lymphocyte subsets at different phases of treatment. Propensity score matching was used to reduce the influence of potential confounding factors. Results: Prior to the neoadjuvant therapy, particularly before the second cycle, the MPR group exhibited significantly higher ratios of CD4/CD8 (P=0.009) and helper T cells (TH ratio, P=0.030) compared to the non-MPR group. In contrast, the suppressor T cell ratio (TS ratio) was lower (P=0.016) in the MPR group. The difference in peripheral blood lymphocyte subsets between the two groups of patients who underwent neoadjuvant chemoradiotherapy is significant. Conclusion: In peripheral blood, T lymphocyte subsets varied significantly based on the effectiveness of neoadjuvant treatment. Prior to the second cycle of neoadjuvant therapy, a higher CD4/CD8 and TH ratio, coupled with a decreased TS ratio, might suggest enhanced treatment outcomes.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/terapia , Terapia Neoadjuvante/métodos , Neoplasias Esofágicas/patologia , Resultado do Tratamento , Intervalo Livre de DoençaRESUMO
In this paper, a core-shell structured nanocomposite material was prepared for the detection, adsorption and removal of Hg(ll) ions in aqueous solution. The core was made from Fe3O4 nanoparticles with superparamagnetic behavior and the outer shell was made from amorphous silica modified with pyrene-based sensing-probes. The material could detect and adsorb Hg(II) ions in aqueous solution due to its surface being modified with pyrene-based sensing-probes, and could easily be removed from the solution by magnetic force because of its core being made from magnetic Fe3O4 nanoparticles. This multifunctional core-shell structure was confirmed and characterized by TEM, IR spectra, TGA, XRD and N2 adsorption/desorption isotherms. Experiments were conducted on its functions of detection, adsorption and removal of Hg(II) ions in aqueous solution. The experimental results showed that this composite material had high sensitivity and unique selectivity to Hg(II), and that it could easily be removed from the solution.
Assuntos
Mercúrio/isolamento & purificação , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Ultrafiltração/métodos , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Água/química , Adsorção , Íons , Teste de Materiais , Mercúrio/química , Tamanho da Partícula , Porosidade , Poluentes Químicos da Água/químicaRESUMO
The rising incidence and severity of malignant tumors threaten human life and health, and the current lagged diagnosis and single treatment in clinical practice are inadequate for tumor management. Gold nanoclusters (AuNCs) are nanomaterials with small dimensions (≤3 nm) and few atoms exhibiting unique optoelectronic and physicochemical characteristics, such as fluorescence, photothermal effects, radiosensitization, and biocompatibility. Here, the three primary functions that AuNCs play in practical applications, imaging agents, drug transporters, and therapeutic nanosystems, are characterized. Additionally, the promise and remaining limitations of AuNCs for tumor theranostic and combination therapy are discussed. Finally, it is anticipated that the information presented herein will serve as a supply for researchers in this area, leading to new discoveries and ultimately a more widespread use of AuNCs in pharmaceuticals.
RESUMO
Infection is one of the main causes of death in cancer patients. Accurate identification of fever caused by infection could avoid unnecessary antibiotic treatment and hospitalization. This study evaluated the diagnostic value of procalcitonin (PCT), C-reactive protein (CRP), interleukin-6 (IL-6), interleukin-10 (IL-10), and other commonly used inflammatory markers in suspected infected adult cancer patients with fever, for better use of antibiotics. This research retrospective analyzed the clinical data of 102 adult cancer patients with fever and compared the serum levels of commonly used inflammatory markers for different fever reasons. Receiver-operating characteristic (ROC) curve and logistic regression analyses were performed. In adult cancer patients with fever, the serum PCT, CRP, IL-6, and IL-10 levels of infected patients were significantly higher than uninfected patients (median 1.19 ng/ml vs 0.14 ng/ml, 93.11 mg/l vs 56.55 mg/l, 123.74 pg/ml vs 47.35 pg/ml, 8.74 pg/ml vs 3.22 pg/ml; Mann-Whitney p = 0.000, p = 0.009, p = 0.004, p = 0.000, respectively). The ROC area under the curve(AUC) was 0.769 (95% confidence interval (CI) 0.681-0.857; p = 0.000) for PCT, 0.664 (95% CI 0.554-0.775; p = 0.009) for CRP, 0.681(95% CI 0.576-0.785; p = 0.004) for IL-6, and 0.731(95% CI 0.627-0.834; p = 0.000) for IL-10. PCT had specificity of 96.67% and positive predictive value (PPV) of 97.6%, when the cut-off value is set as 0.69 ng/ml. The serum IL-6 and IL-10 levels also had significant differences between the infected and uninfected cancer patients with advanced disease (median 128.92 pg/ml vs 36.40 pg/ml, 8.05 pg/ml vs 2.92 pg/ml; Mann-Whitney p = 0.003, p = 0.001, respectively). For the patients with neutropenia, IL-6 and IL-10 had higher AUC of 0.811 and 0.928, respectively. With a cut-off of 9.10 pg/ml, IL-10 had the highest sensitivity 83.33% and specificity 100%. In adult cancer patients, PCT had the best performance compared to CRP, IL-6, and IL-10 in differentiating infected from uninfected causes of fever, with high specificity and PPV. IL-6 and IL-10 might be useful in cancer patients with severe bloodstream infections and advanced disease. However, for patients with neutropenia, IL-10 might be more valuable than PCT in diagnosing infection.