Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(32): e2401054, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38488748

RESUMO

2D conjugated extension on central units of small molecular acceptors (SMAs) has gained great successes in reaching the state-of-the-art organic photovoltaics. Whereas the limit size of 2D central planes and their dominant role in constructing 3D intermolecular packing networks are still elusive. Thus, by exploring a series of SMAs with gradually enlarged central planes, it is demonstrated that, at both single molecular and aggerated levels, there is an unexpected blue-shift for their film absorption but preferable reorganization energies, exciton lifetimes and binding energies with central planes enlarging, especially when comparing to their Y6 counterpart. More importantly, the significance of well-balanced molecular packing modes involving both central and end units is first disclosed through a systematic single crystal analysis, indicating that when the ratio of central planes area/end terminals area is no more than 3 likely provides a preferred 3D intermolecular packing network of SMAs. By exploring the limit size of 2D central planes, This work indicates that the structural profiles of ideal SMAs may require suitable central unit size together with proper heteroatom replacement instead of directly overextending 2D central planes to the maximum. These results will likely provide some guidelines for future better molecular design.

2.
Small ; 20(24): e2311561, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38546001

RESUMO

Balancing the rigid backbones and flexible side chains of light-harvesting materials is crucially important to reach optimized intermolecular packing, micromorphology, and thus photovoltaic performance of organic solar cells (OSCs). Herein, based on a distinctive CH-series acceptor platform with 2D conjugation extended backbones, a series of nonfullerene acceptors (CH-6F-Cn) are synthesized by delicately tuning the lengths of flexible side chains from n-octyl to n-amyl. A systemic investigation has revealed that the variation of the side chain's length can not only modulate intermolecular packing modes and crystallinity but also dramatically improve the micromorphology of the active layer and eventual photovoltaic parameters of OSCs. Consequently, the highest PCE of 18.73% can be achieved by OSCs employing D18:PM6:CH-6F-C8 as light-harvesting materials.

3.
Inorg Chem ; 63(38): 17435-17448, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39231304

RESUMO

The photophysical properties and luminescent mechanism of a series of tripod-type Cu(I) complexes in solution and solids were comprehensively investigated through theoretical simulations. From a microscopic perspective, the experimental phenomenon is explained: (1) The intrinsic reason for the quenching of complex 1 in solution was attributed to the significant nonradiative transition caused by structural deformation; (2) In the solid, the reduced ΔEST for complex 2 effectively facilitate reverse intersystem crossing (RISC) and improves its luminescence efficiency; (3) The enhanced performance of complex 3 in solution is attributed to that its stronger steric hindrance is advantageous to decrease not only the ΔEST but also the reorganization energy through intramolecular weak interactions. Based on complex 3, the tert-butyl substituted isomeric complex 4 was designed. Complex 4 further amplifies the advantages of 3 to further promote the RISC to make full use of excitons. Meanwhile, it has an emission wavelength of 462.6 nm, which makes it an excellent candidate for high-efficiency deep-blue TADF materials. This study provides valuable information for obtaining efficient blue phosphorescence and TADF dual-channel luminescent materials.

4.
Angew Chem Int Ed Engl ; 63(34): e202407355, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38837587

RESUMO

The structure of molecular aggregates is crucial for charge transport and photovoltaic performance in organic solar cells (OSCs). Herein, the intermolecular interactions and aggregated structures of nonfused-ring electron acceptors (NFREAs) are precisely regulated through a halogen transposition strategy, resulting in a noteworthy transformation from a 2D-layered structure to a 3D-interconnected packing network. Based on the 3D electron transport pathway, the binary and ternary devices deliver outstanding power conversion efficiencies (PCEs) of 17.46 % and 18.24 %, respectively, marking the highest value for NFREA-based OSCs.

5.
Angew Chem Int Ed Engl ; 63(10): e202318143, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38190621

RESUMO

In the development of high-performance organic solar cells (OSCs), the self-organization of organic semiconductors plays a crucial role. This study focuses on the precisely manipulation of molecular assemble via tuning alkyl side-chain topology in a series of low-cost nonfused-ring electron acceptors (NFREAs). Among the three NFREAs investigated, DPA-4, which possesses an asymmetric alkyl side-chain length, exhibits a tight packing in the crystal and high crystallinity in the film, contributing to improved electron mobility and favorable film morphology for DPA-4. As a result, the OSC device based on DPA-4 achieves an excellent power conversion efficiency of 16.67 %, ranking among the highest efficiencies for NFREA-based OSCs.

6.
Chemistry ; 29(26): e202300029, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36806228

RESUMO

Deep red/near-infrared (NIR, >650 nm) emissive organic luminophores with aggregation-induced emission (AIE) behaviours have emerged as promising candidates for applications in optoelectronic devices and biological fields. However, the molecular design philosophy for AIE luminogens (AIEgens) with narrow band gaps are rarely explored. Herein, we rationally designed two red organic luminophores, FITPA and FIMPA, by considering the enlargement of transition dipole moment in the charge-transfer state and the transformation from aggregation-caused quenching (ACQ) to AIE. The transition dipole moments were effectively enhanced with a "V-shaped" molecular configuration. Meanwhile, the ACQ-to-AIE transformation from FITPA to FIMPA was induced by a methoxy-substitution strategy. The experimental and theoretical results demonstrated that the ACQ-to-AIE transformation originated from a crystallization-induced emission (CIE) effect because of additional weak interactions in the aggregate state introduced by methoxy groups. Owing to the enhanced transition dipole moment and AIE behaviour, FIMPA presented intense luminescence covering the red-to-NIR region, with a photoluminescence quantum yield (PLQY) of up to 38 % in solid state. The promising cell-imaging performance further verified the great potential of FIMPA in biological applications. These results provide a guideline for the development of red and NIR AIEgens through comprehensive consideration of both the effect of molecular structure and molecular interactions in aggregate states.

7.
Virol J ; 20(1): 68, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37060090

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by Dabie bandavirus (DBV), a novel Bandavirus in the family Phenuiviridae. The first case of SFTS was reported in China, followed by cases in Japan, South Korea, Taiwan and Vietnam. With clinical manifestations including fever, leukopenia, thrombocytopenia, and gastrointestinal symptoms, SFTS has a fatality rate of approximately 10%. In recent years, an increasing number of viral strains have been isolated and sequenced, and several research groups have attempted to classify the different genotypes of DBV. Additionally, accumulating evidence indicates certain correlations between the genetic makeup and biological/clinical manifestations of the virus. Here, we attempted to evaluate the genetic classification of different groups, align the genotypic nomenclature in different studies, summarize the distribution of different genotypes, and review the biological and clinical implications of DBV genetic variations.


Assuntos
Vírus de RNA , Febre Grave com Síndrome de Trombocitopenia , Trombocitopenia , Humanos , China , Japão , Febre Grave com Síndrome de Trombocitopenia/virologia
8.
Inorg Chem ; 62(20): 7753-7763, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37154416

RESUMO

To elucidate the luminescence mechanism of highly efficient blue Cu(N^N)(POP)+-type thermally activated delayed fluorescence (TADF) materials, we have selected Cu(pytfmpz)(POP)+ (1) and Cu(pympz)(POP)+ (2) as targets to investigate the photophysical properties in both solution and solid phases. The self-consistent electrostatic potential (ESP) embedded charge within the quantum mechanics/molecular mechanics (QM/MM) method demonstrates a greater advantage over the charge equilibrium (QEQ) in accurately calculating atomic charges and reasonably describing the polarization effect, ultimately resulting in a favorable consistency between simulation and experimental measurements. After systematic and quantitative simulation, it has been found that complex 2, with an electron-donating group of -CH3, exhibits a much more blue-shifted spectrum and a significantly enhanced efficiency in comparison to complex 1 with -CF3. This is due to the widened HOMO-LUMO gap as well as the narrowed energy gap between the lowest singlet and triplet excited states (ΔEST), respectively. Then, the designed complex 3 is introduced with a stronger electron donor and larger tert-butyl group, which plays a key role in simultaneously suppressing the structural distortion and reducing the ΔEST. This leads to a faster reverse intersystem crossing process than that of the two experimental complexes in solution, turning out to be a new deep-blue-emitting material with excellent TADF performance.

9.
Angew Chem Int Ed Engl ; 62(41): e202309600, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37610865

RESUMO

Due to the pronounced anisotropic response to circularly polarized light, chiral hybrid organic-inorganic metal halides have been regarded as promising candidates for the application in nonlinear chiroptics, especially for the second-harmonic generation circular dichroism (SHG-CD) effect. However, designing novel lead-free chiral hybrid metal halides with large anisotropy factors and high laser-induced damage thresholds (LDT) of SHG-CD remains challenging. Herein, we develop the first chiral hybrid germanium halide, (R/S-NEA)3 Ge2 I7 ⋅H2 O (R/S-NGI), and systematically investigated its linear and nonlinear chiroptical properties. S-NGI and R-NGI exhibit large anisotropy factors (gSHG-CD ) of 0.45 and 0.48, respectively, along with a high LDT of 38.46 GW/cm2 ; these anisotropy factors were the highest values among the reported lead-free chiral hybrid metal halides. Moreover, the effective second-order nonlinear optical coefficient of S-NGI could reach up to 0.86 pm/V, which was 2.9 times higher than that of commercial Y-cut quartz. Our findings facilitate a new avenue toward lead-free chiral hybrid metal halides, and their implementation in nonlinear chiroptical applications.

10.
Angew Chem Int Ed Engl ; 62(44): e202312630, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37704576

RESUMO

Due to the intrinsically flexible molecular skeletons and loose aggregations, organic semiconductors, like small molecular acceptors (SMAs) in organic solar cells (OSCs), greatly suffer from larger structural/packing disorders and weaker intermolecular interactions comparing to their inorganic counterparts, further leading to hindered exciton diffusion/dissociation and charge carrier migration in resulting OSCs. To overcome this challenge, complete peripheral fluorination was performed on basis of a two-dimensional (2D) conjugation extended molecular platform of CH-series SMAs, rendering an acceptor of CH8F with eight fluorine atoms surrounding the molecular backbone. Benefitting from the broad 2D backbone, more importantly, strengthened fluorine-induced secondary interactions, CH8F and its D18 blends afford much enhanced and more ordered molecular packings accompanying with enlarged dielectric constants, reduced exciton binding energies and more obvious fibrillary networks comparing to CH6F controls. Consequently, D18:CH8F-based OSCs reached an excellent efficiency of 18.80 %, much better than that of 17.91 % for CH6F-based ones. More excitingly, by employing D18-Cl that possesses a highly similar structure to D18 as a third component, the highest efficiency of 19.28 % for CH-series SMAs-based OSCs has been achieved so far. Our work demonstrates the dramatical structural multiformity of CH-series SMAs, meanwhile, their high potential for constructing record-breaking OSCs through peripheral fine-tuning.

11.
Angew Chem Int Ed Engl ; 62(49): e202311686, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37858963

RESUMO

Two exotic 6-cantilever small molecular platforms, characteristic of quite different molecular configurations of propeller and quasi-plane, are established by extremely two-dimensional conjugated extension. When applied in small molecular acceptors, the only two cases of CH25 and CH26 that could contain six terminals and such broad conjugated backbones have been afforded thus far, rendering featured absorptions, small reorganization and exciton binding energies. Moreover, their distinctive but completely different molecular geometries result in sharply contrasting nanoscale film morphologies. Finally, CH26 contributes to the best device efficiency of 15.41 % among acceptors with six terminals, demonstrating two pioneered yet highly promising 6-cantilever molecular innovation platforms.

12.
Cancer Cell Int ; 22(1): 58, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109823

RESUMO

BACKGROUND: Colorectal cancer (CRC) has become the second deadliest cancer in the world and severely threatens human health. An increasing number of studies have focused on the role of the RNA helicase DEAD-box (DDX) family in CRC. However, the mechanism of DDX10 in CRC has not been elucidated. METHODS: In our study, we analysed the expression data of CRC samples from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Subsequently, we performed cytological experiments and animal experiments to explore the role of DDX10 in CRC cells. Furthermore, we performed Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein-protein interaction (PPI) network analyses. Finally, we predicted the interacting protein of DDX10 by LC-MS/MS and verified it by coimmunoprecipitation (Co-IP) and qPCR. RESULTS: In the present study, we identified that DDX10 mRNA was extremely highly expressed in CRC tissues compared with normal colon tissues in the TCGA and GEO databases. The protein expression of DDX10 was measured by immunochemistry (IHC) in 17 CRC patients. The biological roles of DDX10 were explored via cell and molecular biology experiments in vitro and in vivo and cell cycle assays. We found that DDX10 knockdown markedly reduced CRC cell proliferation, migration and invasion. Then, we constructed a PPI network with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). GO and KEGG enrichment analysis and gene set enrichment analysis (GSEA) showed that DDX10 was closely related to RNA splicing and E2F targets. Using LC-MS/MS and Co-IP assays, we discovered that RPL35 is the interacting protein of DDX10. In addition, we hypothesize that RPL35 is related to the E2F pathway and the immune response in CRC. CONCLUSIONS: In conclusion, provides a better understanding of the molecular mechanisms of DDX10 in CRC and provides a potential biomarker for the diagnosis and treatment of CRC.

13.
Chemistry ; 28(39): e202201176, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35509241

RESUMO

High performance solution processable n-type organic semiconductor is an essential element to realize low-cost, all organic and flexible composite logic circuits. In the design of n-type semiconducting materials, tuning the LUMO level of compounds is a key point. As a strong electron withdrawing unit, the introduction of chlorine atom into the chemical structure can increase the electron affinity of the material and reduce the LUMO energy level. Here, a series chlorine substituted N-heteroacene analogues of 6,7,8,9-tetrachloro-4,11-bis(4-((2-ethylhexyl)oxy)phenyl)-[1,2,5]thiadiazolo[3,4-b]phenazine (O4Cl), 6,7,8,9-tetrachloro-4,11-bis(4-((2-ethylhexyl)thio)phenyl)-[1,2,5]thiadiazolo[3,4-b]phenazine (S4Cl), 1,2,3,4,8,9,10,11-octachloro-6,13-bis(4-((2-ethylhexyl)oxy)phenyl)quinoxalino[2,3-b]phenazine (8Cl) and 12Cl have been synthesized and characterized. Solution-processed organic field-effect transistors (OFETs) based on these four compounds exhibit good electron mobilities of 0.04 cm2  V-1 s-1 , 0.01 cm2  V-1 s-1 , 2×10-3  cm2  V-1 s-1 and 3×10-3  cm2  V-1 s-1 , respectively, under ambient conditions. The results suggest that these chlorine substituted π-conjugated N-heteroacene analogues are promising n-type semiconductors in OFET applications.

14.
Inorg Chem ; 61(46): 18729-18742, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36351263

RESUMO

The high incidence and difficulties of treatment of cancer have always been a challenge for mankind. Two-photon photodynamic therapy (TP-PDT) as a less invasive technique provides a new perspective for tumor treatment due to its low-energy near-infrared excitation, high targeting, and minor damage. At present, the emerging metal complexes used as the photosensitizers (PSs) in TP-PDT have aroused great interest. However, most metal complexes as PSs in TP-PDT still face some problems, such as slow clearance, unsatisfactory two-photon absorption (TPA) characteristics, high price, low reactivity, and poor solubility. In this work, density functional theory and time-dependent density functional theory were used to characterize the one/two-photon response, solvation free energy, and lipophilicity of a series of novel PSs applied in TP-PDT. The results suggest that based on complex 1, replacing Ru(II) center with Zn(II) (complex 2) can effectively prolong the triplet excited state lifetime while reducing the cost and environmental pollution, and the azetidine heterospirocycles were introduced into the ligand scaffold (complex 3), which effectively reduced the vibration relaxation of the ligand group and improved the water solubility; further, the addition of acetylenyl groups subtly enhanced the light absorption and significantly improved the two-photon response (complex 4). In addition, all complexes met the requirement of a PS and could be used as potential candidates for TP-PDT. In particular, complex 4 has the advantages of high solvation free energy, a large TPA cross-section (1413 GM), a long triplet state lifetime (671 µs), good chemical reactivity, and low cost, and it is easy to be scavenged by organisms. Overall, this contribution may provide an important clue to formulate clear design principles for type I/II PSs and rational design of PSs with high intersystem crossing rates, a long lifetime, and therapeutic excitation wavelengths.


Assuntos
Complexos de Coordenação , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Complexos de Coordenação/farmacologia , Ligantes , Zinco
15.
J Appl Microbiol ; 132(4): 2583-2593, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34847280

RESUMO

AIMS: This study aims to investigate the effect of hydroxy-selenomethionine supplementation on the in vitro rumen fermentation characteristics and microorganisms of Holstein cows. METHODS AND RESULTS: Five fermentation substrates, including control (without selenium supplementation, CON), sodium selenite supplementation (0.3 mg kg-1 DM, SS03), and hydroxy-selenomethionine supplementation (0.3, 0.6 and 0.9 mg kg-1 DM, SM03, SM06 and SM09, respectively) were incubated with rumen fluid in vitro. The results showed that in vitro dry matter disappearance and gas production at 48 h was significantly higher in SM06 than SM03, SS03 and CON; propionate and total volatile fatty acid (VFA) production was higher in SM06 than CON. Moreover, higher species richness of rumen fluid was found in SM06 than others. Higher relative abundance of Prevotella and Prevotellaceae-UCG-003 and lower relative abundance of Ruminococcus-1 were detected in SM06 than CON. Besides, higher relative abundance of Ruminococcaceae_UCG-005 was found in CON than other treatments. CONCLUSIONS: It is observed that 0.6 mg kg-1 DM hydroxy-selenomethionine supplementation could increase cumulative gas production, propionate, and total VFAs production by altering the relative abundance of Prevotella, Prevotellaceae-UCG-003, Ruminococcaceae_UCG-005 and Ruminococcus-1, so that it can be used as a rumen fermentation regulator in Holstein cows. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides an optimal addition ratio of hydroxy-selenomethionine on rumen fermentation and bacterial composition via an in vitro test.


Assuntos
Rúmen , Selenometionina , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Suplementos Nutricionais , Feminino , Fermentação , Lactação , Leite/química , Rúmen/microbiologia , Selenometionina/análise , Selenometionina/metabolismo , Selenometionina/farmacologia
16.
J Therm Biol ; 108: 103249, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36031201

RESUMO

This study investigated the precision air supply cooling system with different cooling air speed on reproductive performance, stress status, immunity and intestinal microbiota of sows. A total of 36 sows were randomly assigned into three groups: control group (CON, n = 12) without cooling system, low cooling air speed (2.24 ± 0.11 m/s) group (LCAS, n = 12) with precision air supply cooling system, high cooling air speed (3.33 ± 0.11 m/s) group (HCAS, n = 12) with precision air supply cooling system. The average daily ambient temperature and relative humidity in experimental farrowing rooms were 28 °C-32 °C and 65%-90%, respectively, during daytime (8:00-20:00). The reproductive performance, respiratory rate (RR), body surface temperature (BST), rectal temperature (RT) salivary parameters and fecal microbiota of lactating sows were measured. The results showed that compared with CON group, average daily feed intake of sows and average daily gain of piglets were increased (P < 0.05) in LCAS and HCAS groups. The RR, BST and RT were decreased (P < 0.05) in LCAS and HCAS groups in wk 1 before parturition and wk 2 after parturition. The salivary cortisol and alpha amylase level of LCAS and HCAS sows were decreased (P < 0.05) on d 14 after parturition, while the salivary immunoglobulin A and immunoglobulin G level of LCAS and HCAS sows were increased (P < 0.05) on d 7 after parturition. The LCAS and HCAS sows showed higher relative abundance of Clostridium_sensu_stricto_1 in feces, which was positively associated with immunoglobulin A (P < 0.01). In conclusion, both low and high cooling air speed improved reproductive performance, alleviated stress status, and enhanced salivary immunoglobulins and beneficial fecal microbiota community in lactating sows, which indicated that precision air supply cooling system could be an effective cooling strategy for lactating sows in high ambient temperature.


Assuntos
Microbioma Gastrointestinal , Lactação , Ração Animal , Animais , Fezes , Feminino , Imunoglobulina A , Imunoglobulinas , Suínos
17.
J Sci Food Agric ; 102(10): 4086-4096, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34997593

RESUMO

BACKGROUND: This experiment was to investigate the effect of dietary live yeast (LY, 1 × 1010 CFU g-1 ) supplementation on serum metabolic parameters, meat quality as well as antioxidant enzyme activity of transported broilers. A total of 192 one-day-old broilers were randomly assigned to four treatments with six replicates and eight chicks per replicate: a basal diet without transportation (CON), a basal diet containing 0 (T), 500 (T + LY500 ) and 1000 mg kg-1 (T + LY1000 ) LY with 3 h of transportation after feeding for 42 days, respectively. The serum and muscle samples of broilers were collected immediately after 3 h of transportation. RESULTS: A higher (P < 0.05) final body weight and average daily weight gain were observed in T + LY1000 group compared with CON and T groups. The T + LY1000 group reduced (P < 0.05) the serum lactate contents and improved (P < 0.05) the pH24h and decreased (P < 0.05) the drip loss in muscles of transported-broilers. Also, the T + LY1000 group enhanced (P < 0.05) the total-antioxidant capacity and reduced (P < 0.05) the malondialdehyde in serum and muscles. Besides, the messenger RNA (mRNA) expression of avian uncoupling protein (avUCP) in muscles was down-regulated (P < 0.05) of T + LY1000 group compared with T group. CONCLUSION: Dietary LY supplementation alleviates transport-stress-impaired meat quality of broilers through maintaining muscle energy metabolism and antioxidant status. Therefore, LY may serve as a potential protector for broilers under transport stress in the future. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Antioxidantes , Galinhas , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Galinhas/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Metabolismo Energético , Carne/análise , Músculo Esquelético/metabolismo , Saccharomyces cerevisiae/metabolismo
18.
Curr Opin Rheumatol ; 33(1): 94-109, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33229973

RESUMO

PURPOSE OF REVIEW: Osteoarthritis is associated with severe joint pain, inflammation, and cartilage degeneration. Drugs injected directly into intra-articular joint space clear out rapidly providing only short-term benefit. Their transport into cartilage to reach cellular targets is hindered by the tissue's dense, negatively charged extracellular matrix. This has limited, despite strong preclinical data, the clinical translation of osteoarthritis drugs. Recent work has focused on developing intra-joint and intra-cartilage targeting drug delivery systems (DDS) to enable long-term therapeutic response, which is presented here. RECENT FINDINGS: Synovial joint targeting hybrid systems utilizing combinations of hydrogels, liposomes, and particle-based carriers are in consideration for pain-inflammation relief. Cartilage penetrating DDS target intra-cartilage constituents like aggrecans, collagen II, and chondrocytes such that drugs can reach their cellular and intra-cellular targets, which can enable clinical translation of disease-modifying osteoarthritis drugs including gene therapy. SUMMARY: Recent years have witnessed significant increase in both fundamental and clinical studies evaluating DDS for osteoarthritis. Steroid encapsulating polymeric microparticles for longer lasting pain relief were recently approved for clinical use. Electrically charged biomaterials for intra-cartilage targeting have shown promising disease-modifying response in preclinical models. Clinical trials evaluating safety of viral vectors are ongoing whose success can pave the way for gene therapy as osteoarthritis treatment.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Osteoartrite/tratamento farmacológico , Agrecanas/administração & dosagem , Animais , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Terapia Genética/métodos , Humanos , Inflamação/tratamento farmacológico , Injeções Intra-Articulares/métodos , Nanopartículas/administração & dosagem , Dor/tratamento farmacológico , Esteroides/administração & dosagem , Membrana Sinovial/metabolismo
19.
J Chem Inf Model ; 61(10): 5082-5097, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34606272

RESUMO

Hypochloric acid (HOCl) plays a vital role in the natural defense system, but abnormal levels of it can cause cell damage, accelerated human aging, and various diseases. It is of great significance to develop new probes for detecting HOCl in biosystems nondestructively and noninvasively. The purpose of this work is to explore new chemical modification strategies of two-photon excitation fluorescence (TPEF) probes to improve the poor water solubility and low efficiency in imaging applications. Nil-OH-6 has a two-photon absorption cross-section value as high as 243 GM and attains a good quantum yield of 0.49. In addition, the modification of terminal groups with different azetidine-heterospirocycles or N,N-dialkyl fused amino groups to Nile Red can effectively improve the fluorescence efficiency as well as increase the solubility to some extent. This study provides some strategies to simultaneously improve the fluorescence performance and solubility of these two-photon probes and, hence, reliable guidance and a foundation for the subsequent synthesis of TPEF probes based on Nile Red.


Assuntos
Corantes Fluorescentes , Modelos Teóricos , Humanos , Oxazinas , Solubilidade , Água
20.
Phys Chem Chem Phys ; 23(9): 5652-5664, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33656501

RESUMO

To develop solid-state light-emitting materials with high luminescence efficiency, determining the potential photophysics and luminescence mechanisms of the aggregation state remains a challenge and a priority. Here, we apply density functional theory to study the photophysical properties of a series of square planar Pt(ii) complexes in both monomeric and dimeric forms. We reveal that four monomeric Pt(ii) complexes are dominated by triplet ligand-to-ligand charge-transfer, and the lack of the triplet metal-to-ligand charge-transfer feature results in weak spin-orbit coupling (SOC), which leads to limited radiative rates; moreover, calculated nonradiative transition rates are one or two orders of magnitude higher than those radiative rates because a large amount of reorganization energy caused by the vibration of the bipyrazolate (bipz) ligand cannot be readily suppressed in the monomeric form. Therefore, four monomers exhibit photoluminescence quenching in CH2Cl2 solution in both theoretical calculations and experiments. However, in the solid state, the intense luminescence phenomenon indicates obviously distinct properties between the monomer and aggregation. We carried out a dimer model to interpret that the interaction of PtPt induces a metal-metal-to-ligand charge-transfer excimeric state, which leads more metal components to participate in the charge transfer and enhance the SOC effect. At the same time, the ligand vibration can be significantly reduced by the shortened distance, and there is a strong π-π packing interaction in the dimer; thus, an excellent quantum yield can be achieved in aggregation. In addition, we disclose that introducing bulky substituents bearing electron-donating groups at R' and R'' positions have little effect on the properties of the monomers; however, there is a benefit of restricting the internal reorganization energy through the intermolecular interaction when packing in the solid state. Therefore, substitutions can be tuned to improve the properties of monomers (such as emission energy and reorganization energy). We hope that our work will shine some light on Pt(ii) emitters in the fabrication of efficient OLEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA