Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(7): 3150-3165, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36869674

RESUMO

DNA double-strand breaks (DSBs) are functionally linked to genomic instability in spermatocytes and to male infertility. The heavy metal cadmium (Cd) is known to induce DNA damage in spermatocytes by unknown mechanisms. Here, we showed that Cd ions impaired the canonical non-homologous end-joining (NHEJ) repair pathway, but not the homologous recombination (HR) repair pathway, through stimulation of Ser2056 and Thr2609 phosphorylation of DNA-PKcs at DSB sites. Hyper-phosphorylation of DNA-PKcs led to its premature dissociation from DNA ends and the Ku complex, preventing recruitment of processing enzymes and further ligation of DNA ends. Specifically, this cascade was initiated by the loss of PP5 phosphatase activity, which results from the dissociation of PP5 from its activating ions (Mn), that is antagonized by Cd ions through a competitive mechanism. In accordance, in a mouse model Cd-induced genomic instability and consequential male reproductive dysfunction were effectively reversed by a high dosage of Mn ions. Together, our findings corroborate a protein phosphorylation-mediated genomic instability pathway in spermatocytes that is triggered by exchange of heavy metal ions.


Assuntos
Cádmio , Instabilidade Genômica , Infertilidade Masculina , Espermatócitos , Animais , Humanos , Masculino , Camundongos , Cádmio/toxicidade , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Instabilidade Genômica/efeitos dos fármacos , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Íons/metabolismo , Fosforilação , Reparo de DNA por Recombinação , Espermatócitos/efeitos dos fármacos
2.
Acta Pharmacol Sin ; 45(4): 728-737, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38086898

RESUMO

Stimulation of adult cardiomyocyte proliferation is a promising strategy for treating myocardial infarction (MI). Earlier studies have shown increased CCL2 levels in plasma and cardiac tissue both in MI patients and mouse models. In present study we investigated the role of CCL2 in cardiac regeneration and the underlying mechanisms. MI was induced in adult mice by permanent ligation of the left anterior descending artery, we showed that the serum and cardiac CCL2 levels were significantly increased in MI mice. Intramyocardial injection of recombinant CCL2 (rCCL2, 1 µg) immediately after the surgery significantly promoted cardiomyocyte proliferation, improved survival rate and cardiac function, and diminished scar sizes in post-MI mice. Alongside these beneficial effects, we observed an increased angiogenesis and decreased cardiomyocyte apoptosis in post-MI mice. Conversely, treatment with a selective CCL2 synthesis inhibitor Bindarit (30 µM) suppressed both CCL2 expression and cardiomyocyte proliferation in P1 neonatal rat ventricle myocytes (NRVMs). We demonstrated in NRVMs that the CCL2 stimulated cardiomyocyte proliferation through STAT3 signaling: treatment with rCCL2 (100 ng/mL) significantly increased the phosphorylation levels of STAT3, whereas a STAT3 phosphorylation inhibitor Stattic (30 µM) suppressed rCCL2-induced cardiomyocyte proliferation. In conclusion, this study suggests that CCL2 promotes cardiac regeneration via activation of STAT3 signaling, underscoring its potential as a therapeutic agent for managing MI and associated heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Camundongos , Animais , Ratos , Quimiocina CCL2/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos , Insuficiência Cardíaca/metabolismo , Regeneração , Camundongos Endogâmicos C57BL , Apoptose , Fator de Transcrição STAT3/metabolismo
3.
Acta Pharmacol Sin ; 44(6): 1149-1160, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36473990

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is highly prevalent, and lacks effective treatment. The aberration of WNT pathway underlies many pathological processes including cardiac fibrosis and hypertrophy, while porcupine is an acyltransferase essential for the secretion of WNT ligands. In this study we investigated the role of WNT signaling pathway in HFpEF as well as whether blocking WNT signaling by a novel porcupine inhibitor CGX1321 alleviated HFpEF. We established two experimental HFpEF mouse models, namely the UNX/DOCA model and high fat diet/L-NAME ("two-hit") model. The UNX/DOCA and "two-hit" mice were treated with CGX1321 (3 mg·kg-1·d-1) for 4 and 10 weeks, respectively. We showed that CGX1321 treatment significantly alleviated cardiac hypertrophy and fibrosis, thereby improving cardiac diastolic function and exercise performance in both models. Furthermore, both canonical and non-canonical WNT signaling pathways were activated, and most WNT proteins, especially WNT3a and WNT5a, were upregulated during the development of HEpEF in mice. CGX1321 treatment inhibited the secretion of WNT ligands and repressed both canonical and non-canonical WNT pathways, evidenced by the reduced phosphorylation of c-Jun and the nuclear translocation of ß-catenin and NFATc3. In an in vitro HFpEF model, MCM and ISO-treated cardiomyocytes, knockdown of porcupine by siRNA leads to a similar inhibitory effect on WNT pathways, cardiomyocyte hypertrophy and cardiac fibroblast activation as CGX1321 did, whereas supplementation of WNT3a and WNT5a reversed the anti-hypertrophy and anti-fibrosis effect of CGX1321. We conclude that WNT signaling activation plays an essential role in the pathogenesis of HFpEF, and porcupine inhibitor CGX1321 exerts a therapeutic effect on HFpEF in mice by attenuating cardiac hypertrophy, alleviating cardiac fibrosis and improving cardiac diastolic function.


Assuntos
Cardiomiopatias , Acetato de Desoxicorticosterona , Insuficiência Cardíaca , Animais , Camundongos , Cardiomegalia/patologia , Cardiomiopatias/patologia , Acetato de Desoxicorticosterona/farmacologia , Acetato de Desoxicorticosterona/uso terapêutico , Fibrose , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos , Volume Sistólico/fisiologia , Via de Sinalização Wnt
4.
Exp Cell Res ; 396(1): 112237, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32841643

RESUMO

The proliferation and differentiation of myoblast cells are regulated by the fibroblast growth factor receptor (FGFR) signaling pathway. Although the regulation of FGFR signaling cascades has been widely investigated, the inhibitory mechanism that particularly function in skeletal muscle myogenesis remains obscure. In this study, we determined that LRTM1, an inhibitory regulator of the FGFR signaling pathway, negatively modulates the activation of ERK and promotes the differentiation of myoblast cells. LRTM1 is dynamically expressed during myoblast differentiation and skeletal muscle regeneration after injury. In mouse myoblast C2C12 cells, knockout (KO) of Lrtm1 significantly prevents the differentiation of myoblast cells; this effect is associated with the reduction of MyoD transcriptional activity and the overactivation of ERK kinase. Notably, further studies demonstrated that LRTM1 associates with p52Shc and inhibits the recruitment of p52Shc to FGFR1. Taken together, our findings identify a novel negative regulator of FGFR1, which plays an important role in regulating the differentiation of myoblast cells.


Assuntos
Proteínas de Membrana/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Proteínas do Tecido Nervoso/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/genética , Animais , Cardiotoxinas/toxicidade , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana/deficiência , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Miogenina/genética , Miogenina/metabolismo , Proteínas do Tecido Nervoso/deficiência , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Biochem Biophys Res Commun ; 522(4): 924-930, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31806371

RESUMO

Lysine-specific demethylase 1 (LSD1) is a well characterized transcriptional regulator functioning on the chromatin to remove mono- and di-methyl groups from lysine 4 or lysine 9 of histone 3 (H3K4 or H3K9). LSD1 also has non-transcriptional activities via targeting non-histone substrates that participate in diverse biological processes. In this report, we determined that LSD1 negatively regulates autophagy in skeletal muscle cells by promoting PTEN degradation in a transcription-independent mechanism. In C2C12 cells, LSD1 inhibition or depletion significantly induced the initiation of autophagy; and autophagy resulted from LSD1 inhibition is associated with AKT/mTORC1 inactivation. Notably, the proteins of PTEN, a prominent repressive AKT modulator, are stabilized by LSD1 inhibition despite a decrease of its mRNA levels. Further data demonstrated that LSD1 interacts with PTEN protein and enhances its ubiquitination and degradation. Together, our findings identify a novel biological function of LSD1 in autophagy, mediated by regulating the stability of PTEN and the activity of AKT/mTORC1.


Assuntos
Autofagia , Histona Desmetilases/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteólise , Animais , Linhagem Celular , Ativação Enzimática , Estabilidade Enzimática , Histona Desmetilases/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Mioblastos/ultraestrutura , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transcrição Gênica , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA