Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Exp Cell Res ; 387(1): 111744, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759967

RESUMO

Sirtuin 6 (SIRT6), a nicotinamide adenine dinucleotide-dependent deacetylase, participates in various age-related disorders, such as dyslipidemia and cardiovascular diseases. Recent studies have revealed that minute cholesterol crystals (CCs), which are generated after excess free cholesterol accumulation, form not only in mature atherosclerotic plaques but also extremely early in atherosclerosis. Since endothelial dysfunction is an early feature of atherogenesis, this study was designed to investigate the role of SIRT6 in minute CC-induced endothelial dysfunction and the related mechanism. We found that minute CCs could be endocytosed by endothelial cells (ECs), which then decreased nitric oxide (NO) levels and endothelial nitric oxide synthase (eNOS) activity and expression, upregulated the expression of adhesion molecules and enhanced monocyte adhesion to ECs. In addition, minute CCs significantly suppressed SIRT6 expression in ECs. Moreover, the overexpression of SIRT6 could mitigate minute CC-induced endothelial dysfunction. In addition, the expression of Nuclear factor erythroid2-related factor2 (Nrf2) was suppressed after minute CC treatment, whereas SIRT6 overexpression reversed this decrease in Nrf2 expression. More importantly, Nrf2 activation also notably attenuated minute CC-induced endothelial dysfunction. In vivo experiments further indicated that endothelium-specific SIRT6 depletion impaired vascular endothelial function and suppressed Nrf2 expression in hyperlipidemic mice. Taken together, these results indicate that SIRT6 rescues minute CC-induced endothelial dysfunction partly via Nrf2 activation.


Assuntos
Aterosclerose/metabolismo , Colesterol/metabolismo , Endotélio Vascular/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sirtuínas/metabolismo , Animais , Células Cultivadas , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Hiperlipidemias/metabolismo , Masculino , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo
2.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769438

RESUMO

Oleanolic acid (OA), asiatic acid (AA), and maslinic acid (MA) are ubiquitous isomeric triterpene phytochemicals with many pharmacological effects. To improve their application value, we used lipopolysaccharide (LPS) to induce RAW264.7 cells and studied the differences in the anti-inflammatory effects of the triterpenes according to their structural differences. MTT, Griess, and immunofluorescence assays, ELISA, flow cytometry, and Western blotting, were performed. The release of LPS-induced pro-inflammatory mediators, such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), and interleukin (IL-6), was significantly inhibited by OA, AA, and MA at the same concentration, and AA and MA promoted the production of anti-inflammatory factor IL-10. OA, AA, and MA inhibited LPS-induced NF-κB nuclear translocation in RAW264.7 cells. OA and AA inhibited the phosphorylation of ERK1/2, P38, and JNK1/2 in LPS-stimulated RAW264.7 cells. Moreover, OA increased LPS-induced Nrf2 expression and decreased Keap1 expression in RAW264.7 cells. OA, AA, and MA inhibited LPS-stimulated intracellular reactive oxygen species (ROS) production and alleviated mitochondrial membrane potential depletion. Overall, our data suggested that OA, AA, and MA exhibited significant anti-inflammatory effects in vitro. In particular, OA and AA take effects through the MAPKs, NF-κB, and Nrf2 signaling pathways.


Assuntos
Anti-Inflamatórios/farmacologia , Hippophae/química , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Linhagem Celular , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais
3.
Histochem Cell Biol ; 153(5): 357-366, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32124010

RESUMO

The proliferation, migration, and cellular morphology of vascular smooth muscle cells (VSMCs) play important roles in the pathogenesis of atherosclerosis (AS). Homocysteine (Hcy) is a sulfur-containing amino acid, which is an intermediate product of methionine metabolism. Hcy can induce proliferation, migration, and phenotypic switch of VSMCs, but details of these mechanisms are still unclear. The phosphatidylinositol 3-kinase (PI3K/Akt/mTOR) signaling pathway is involved in a host of cellular functions. In this study, we sought to determine if this multifunctional pathway played a role in Hcy-induced proliferation, migration, and phenotypic transformation of VSMCs, which has not been previously reported. miR-145 has been previously reported to suppress the effects of Hcy in VSMCs. In our study, using qRT-PCR, we found that Hcy itself reduced the expression of miR-145 in VSMCs, while overexpression of miR-145 reduced the proliferation, migration, and phenotypic transformation of VSMCs caused by Hcy. Using Western blot analysis, we found that VSMCs exposed to Hcy exhibited significant increases in the levels of PI3K, Akt, and mTOR proteins. Additionally, overexpression of miR-145 dramatically decreased PI3K, Akt, and mTOR expression. Using qRT-PCR we found that miR-145 expression increased after blocking PI3K using an inhibitor. Inhibition of the PI3K signaling pathway also prevented Hcy-induced VSMC proliferation, migration, and phenotypic switch. Taken together, our results suggest that miR-145 could inhibit VSMC proliferation, migration, and phenotype switching by preventing activation of the PI3K/Akt/mTOR signaling pathway.


Assuntos
Movimento Celular , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Células Cultivadas , Humanos , MicroRNAs/genética , Transdução de Sinais
4.
Exp Cell Res ; 357(1): 88-97, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28477980

RESUMO

SIRT6, with both deacetylase and ADP-ribosyltransferase activities, is predominantly expressed in the nucleus. It has been revealed that SIRT6 regulates various biological functions including metabolism, aging and stress resistance. This study aims to investigate the role of SIRT6 in vascular inflammation and it molecular mechanism. We found that tumor necrosis factor-α (TNF-α) did not alter the localization of SIRT6 in vascular adventitial fibroblasts (VAFs), vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). The expression of SIRT1, SIRT6 was decreased in TNF-α-treated VAFs. In contrast, TNF-α significantly increased the expression of monocyte chemotactic protein 1 (MCP-1) and interleukin (IL) -6. Knockdown of SIRT1 and SIRT6 by siRNA significantly enhanced TNF-α-induced expression of MCP-1 and IL-6, respectively. Overexpression of SIRT1 and SIRT6 inhibited TNF-α-induced expression of MCP-1 and IL-6 in VAFs. Moreover, we also found SIRT1 positively regulated the expression of SIRT6 in VAFs. In addition, knockdown of SIRT1 and SIRT6 respectively augmented TNF-α-induced generation of reactive oxygen species (ROS) and phosphorylation of protein kinase B (Akt). ROS scavenger N-acetyl-L-cysteine (NAC) and Akt inhibitor MK2206 reduced TNF-α-induced mRNA expression of MCP-1 and IL-6 in VAFs. In vivo studies indicated that the expression of SIRT1, SIRT6 was decreased and the expression of MCP-1, IL-6 and IL-1ß was increased in carotid collar-induced vascular inflammation. Taken together, these findings indicate that SIRT1 and SIRT6 inhibit TNF-α-induced inflammation in VAFs by ROS and Akt pathway.


Assuntos
Fibroblastos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuínas/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-6/metabolismo , Ratos , Fator de Necrose Tumoral alfa/metabolismo
5.
Can J Physiol Pharmacol ; 96(1): 88-96, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28772080

RESUMO

Hydroxytyrosol (HT), a phenolic compound in olive oil, exerts an anti-inflammatory effect in cardiovascular diseases. Recent studies found that autophagy was a therapeutic target of diseases. However, the effect of HT on autophagy in vascular adventitial fibroblasts (VAFs) remains unknown. Thus, in this study, we aimed to determine the effect of HT on cell autophagy and related signaling pathway and whether HT regulates the inflammatory response through autophagy in VAFs. Our results showed that HT promoted cell autophagy by increasing the conversion of LC3 and Beclin1 expression and the autophagic flux in VAFs stimulated with tumor necrosis factor-α (TNF-α). HT also upregulated the expression of the deacetylase sirtuin 1 (SIRT1) protein and mRNA compared with the TNF-α group. The molecular docking studies showed the good compatibility between HT and SIRT1, indicating that HT might act through SIRT1. Further study found that HT regulated autophagy through SIRT1-mediated Akt/mTOR suppression in VAFs. In addition, HT inhibited TNF-α-induced inflammatory response in VAFs through SIRT1. Furthermore, the study showed that HT inhibited the inflammatory response of VAFs through autophagy. These findings indicate that HT regulates the autophagy of VAFs through SIRT1-mediated Akt/mTOR suppression and then inhibits the inflammatory response of VAFs.


Assuntos
Túnica Adventícia/citologia , Autofagia/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/metabolismo , Álcool Feniletílico/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Animais , Fibroblastos/efeitos dos fármacos , Inflamação/patologia , Masculino , Modelos Biológicos , Álcool Feniletílico/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/efeitos dos fármacos
6.
Cell Physiol Biochem ; 41(2): 569-582, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28214861

RESUMO

BACKGROUND/AIMS: Autophagy is a lysosomal degradation pathway that is essential for cellular survival, differentiation, and homeostasis. Sirtuin 1 (SIRT1), a NAD+-dependent deacetylase, plays a pivotal role in modulation of autophagy. Recent studies found that autophagy was involved in the regulation of inflammatory response. In this study, we aimed to determine the effect of SIRT1 on autophagy and inflammation, and whether autophagy can regulate the inflammatory response in vascular adventitial fibroblasts (VAFs). METHODS: Cell autophagy was evaluated by fluorescence microscope and transmission electron microscopy. The expression of protein and mRNA were determined by Western blot analysis and real time-PCR. The production of cytokine was detected by ELISA. RESULTS: TNF-α induced autophagy and increased SIRT1 expression in VAFs. SIRT1 activator resveratrol enhanced TNF-α-induced VAF autophagy. In contrast, SIRT1 knockdown attenuated VAF autophagy. Both the Akt inhibitor MK2206 and mTOR inhibitor rapamycin further increased TNF-α-induced VAF autophagy. Furthermore, SIRT1 knockdown increased Akt phosphorylation and inhibited the autophagy in VAFs. However, MK2206 attenuated the effect of SIRT1 knockdown on VAF autophagy. In addition, ingenuity pathway analysis showed that there is a relationship between cell autophagy and inflammation. We found that SIRT1 knockdown increased the expression of NLRP3 and interleukin (IL)-6 and promoted the production of IL-1ß in VAFs. Further study showed that autophagy activation decreased the expression of NLRP3 and IL-6 and inhibited the production of IL-1ß, whereas autophagy inhibition increased the inflammatory response of VAFs. More importantly, our study showed that autophagy was involved in the degradation of NLRP3 through the autophagy-lysosome pathway. CONCLUSION: SIRT1 not only regulates VAF autophagy through the Akt/mTOR signaling pathway but also suppresses the inflammatory response of VAFs through autophagy.


Assuntos
Autofagia , Transdução de Sinais , Sirtuína 1/metabolismo , Túnica Adventícia/citologia , Animais , Autofagia/efeitos dos fármacos , Benzamidas/farmacologia , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Interleucina-1beta/análise , Interleucina-6/metabolismo , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Naftóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Estilbenos/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
7.
Appl Microbiol Biotechnol ; 101(19): 7357-7370, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28868587

RESUMO

Oral candidiasis or thrush is a fungal infection due to Candida albicans, causing discomfort in areas inside mouth or tongue. The clinical application of antifungal reagent amphotericin B (AMB), which is believed to offer a better treatment for oral candidiasis, is greatly compromised by its toxicities (mainly nephrotoxicity) and poor solubility. In order to overcome these issues, we characterized AMB-loaded MPEG-PCL micelles in vitro and in vivo. In addition, the antifungal activities of AMB/MPEG-PCL micelles-loaded buccal tablet were also evaluated in vitro. We found that micelles system could significantly improve the solubility of AMB yet reduce the overall toxicity, while the buccal tablet system is capable to suppress C. albicans biofilm formation. Furthermore, the toxicity of the buccal tablet system is also reduced compared with other standard preparations. Therefore, the prepared tablet with AMB-loaded MPEG-PCL micelles as oral topical preparations has the potential to improve current treatment of superficial oral C. albicans infections.


Assuntos
Anfotericina B/farmacologia , Anfotericina B/toxicidade , Antifúngicos/farmacologia , Antifúngicos/toxicidade , Poliésteres/química , Polietilenoglicóis/química , Animais , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Masculino , Micelas , Nanopartículas/química , Ratos , Ratos Sprague-Dawley , Comprimidos , Testes de Toxicidade
8.
Exp Cell Res ; 338(1): 54-63, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26226216

RESUMO

Recent studies demonstrated that the ligand-activated transcription factor peroxisome proliferator-activated receptorα (PPARα) acts in association with histone deacetylase sirtuin 1 (SIRT1) in the regulation of metabolism and inflammation involved in cardiovascular diseases. PPARα activation also participates in the modulation of cell apoptosis. Our previous study found that SIRT1 inhibits the apoptosis of vascular adventitial fibroblasts (VAFs). However, whether the role of PPARα in apoptosis of VAFs is mediated by SIRT1 remains unknown. In this study, we aimed to determine the effect of PPARα agonist fenofibrate on cell apoptosis and SIRT1 expression and related mechanisms in ApoE(-/-) mice and VAFs in vitro. We found that fenofibrate inhibited cell apoptosis in vascular adventitia and up-regulated SIRT1 expression in aorta of ApoE(-/-) mice. Moreover, SIRT1 activator resveratrol (RSV) further enhanced these effects of fenofibrate. In vitro study showed that activation of PPARα by fenofibrate inhibited TNF-α-induced cell apoptosis and cell cycle arrest in VAFs. Meanwhile, fenofibrate up-regulated SIRT1 expression and inhibited SIRT1 translocation from nucleus to cytoplasm in VAFs stimulated with TNF-α. Moreover, the effects of fenofibrate on cell apoptosis and SIRT1 expression in VAFs were reversed by PPARα antagonist GW6471. Importantly, treatment of VAFs with SIRT1 siRNA or pcDNA3.1(+)-SIRT1 showed that the inhibitory effect of fenofibrate on cell apoptosis in VAFs through SIRT1. On the other hand, knockdown of FoxO1 decreased cell apoptosis of VAFs compared with fenofibrate group. Overexpression of FoxO1 increased cell apoptosis of VAFs compared with fenofibrate group. Further study found that fenofibrate decreased the expression of acetylated-FoxO1 in TNF-α-stimulated VAFs, which was abolished by SIRT1 knockdown. Taken together, these findings indicate that activation of PPARα by fenofibrate inhibits cell apoptosis in VAFs partly through the SIRT1-mediated deacetylation of FoxO1.


Assuntos
Apoptose/efeitos dos fármacos , Fenofibrato/farmacologia , Fibroblastos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Hipolipemiantes/farmacologia , PPAR alfa/metabolismo , Sirtuína 1/metabolismo , Acetilação , Túnica Adventícia/citologia , Animais , Vasos Sanguíneos/citologia , Pontos de Checagem do Ciclo Celular , Células Cultivadas , Proteína Forkhead Box O1 , Masculino , Camundongos Knockout , Processamento de Proteína Pós-Traducional , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/fisiologia
9.
Toxicol Appl Pharmacol ; 273(1): 59-67, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23994555

RESUMO

Intracellular reactive oxygen species (ROS) are derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Angiotensin II (Ang II) can cause endothelial dysfunction by promoting intracellular ROS generation. Safflor yellow B (SYB) effectively inhibits ROS generation by upregulating Bcl-2 expression. In this study, we examined the effects of SYB on Ang II-induced injury to human umbilical vein endothelial cells (HUVECs), and elucidated the roles of NADPH oxidase and Bcl-2. We treated cultured HUVECs with Ang II, SYB, and Bcl-2 siRNA, and determined NADPH oxidase activity and ROS levels. Furthermore, cellular and mitochondrial physiological states were evaluated, and the expression levels of target proteins were analyzed. Ang II significantly enhanced intracellular ROS levels, caused mitochondrial membrane dysfunction, and decreased cell viability, leading to apoptosis. This was associated with increased expression of AT1R and p22(phox), increased NADPH oxidase activity, and an increased ratio of Bax/Bcl-2, leading to decreases in antioxidant enzyme activities, which were further strengthened after blocking Bcl-2. Compared to Ang II treatment alone, co-treatment with SYB significantly reversed HUVEC injury. Taken together, these results demonstrate that SYB could significantly protect endothelial cells from Ang II-induced cell damage, and that it does so by upregulating Bcl-2 expression and inhibiting ROS generation.


Assuntos
Angiotensina II/efeitos adversos , Chalcona/análogos & derivados , NADPH Oxidases/metabolismo , Veias Umbilicais/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Chalcona/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NADPH Oxidases/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Veias Umbilicais/citologia , Veias Umbilicais/metabolismo , Regulação para Cima , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Proteína X Associada a bcl-2/genética
11.
Int Immunopharmacol ; 99: 107926, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34233231

RESUMO

Emerging evidence suggests that inflammation plays a pivotal role in Atherosclerosis. Sirtuin 6 (SIRT6), a member of NAD+-dependent protein lysine deacylases of the sirtuin family, plays an important role in the regulation of metabolism, aging and stress resistance. However, the role of SIRT6 in vascular inflammation and its molecular mechanism is unknown. The present study showed that TNF-α significantly reduced the expression of SIRT6 protein and mRNA in a concentration- and time-dependent manner and increased the expression of monocyte chemotactic protein 1 (MCP-1), interleukin (IL) -6 and IL-1ß in human umbilical vein endothelial cells (HUVECs). Overexpression of SIRT6 but not its catalytically inactive mutant inhibited TNF-α-induced expression of MCP-1, IL-6 and IL-1ß. Knockdown of SIRT6 significantly enhanced TNF-α-induced expression of MCP-1, IL-6 and IL-1ß. Moreover, knockdown of SIRT6 reduced TNF-α-induced nuclear factor erythroid 2 related factor 2 (NRF2) nucleus protein expression, whereas knockdown of NRF2 significantly enhanced TNF-α-induced expression of MCP-1, IL-6 and IL-1ß. In addition, overexpression of SIRT6 increased NRF2 and its target genes expression, and knockdown of SIRT6 decreased NRF2 and its target genes expression. Meanwhile, knockdown of SIRT6 inhibited NRF2 nucleus protein expression. Further, knockdown of SIRT6 decreased phosphorylation of NRF2, overexpression of SIRT6 increased phosphorylation of NRF2. SIRT6 interacted with NRF2. In vivo, the levels of TNF-α and IL-1ß were increased in the serum of hyperlipidemia mice. Hyperlipidemia-induced production of MCP-1, IL-6 and IL-1ß was significantly augmented in the endothelium specific SIRT6 knockout mice. In contrast, the expression of NRF2 and its target genes was reduced. Taken together, these results indicate that SIRT6 protects against vascular inflammation via its deacetylase activity and the NRF2-dependent signaling pathway.


Assuntos
Anti-Inflamatórios/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sirtuínas/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Quimiocina CCL2/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Transdução de Sinais , Sirtuínas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
12.
Phytomedicine ; 52: 206-215, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30599900

RESUMO

BACKGROUND: Vascular complications are major causes of disability and death in people with diabetes mellitus (DM). Nitric oxide (NO) supplement may help prevent vascular complications and is an attractive treatment option for DM. Hydroxytyrosol (HT) is a major polyphenol in olive oil. It is mainly used as a dietary supplement because of its antioxidant effect. PURPOSE: We aimed to determine the effects of hydroxytyrosol nitric oxide (HT-NO) on oxidative stress and NO level as well as related mechanisms. STUDY DESIGN/METHODS: The effects of HT-NO on oxidative stress and NO level were examined by using diabetic mouse model and HUVECs. RESULTS: Our results showed that HT-NO has antioxidant and NO-releasing activities in vitro and in DM mice. HT-NO not only decreased blood glucose and oxidative stress but also increased NO level and deacetylase Sirtuin 1 (SIRT1) expression in DM mice and high glucose (HG)-stimulated HUVECs. Further studies found that SIRT1 activation augmented the effect of HT-NO on eNOS phosphorylation in HG-stimulated HUVECs. However, the promotive effect of HT-NO on eNOS phosphorylation was abolished by SIRT1 knockdown. Most importantly, HT-NO inhibited reactive oxygen species (ROS) production through SIRT1 in HUVECs. The ROS scavenger enhanced the effect of HT-NO on eNOS phosphorylation. CONCLUSION: These results suggest that HT-NO regulates oxidative stress and NO production partly through SIRT1 in DM mice and HG-stimulated HUVECs.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Álcool Feniletílico/análogos & derivados , Sirtuína 1/metabolismo , Animais , Antioxidantes/farmacologia , Glicemia , Diabetes Mellitus Experimental/metabolismo , Suplementos Nutricionais , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos , Óxido Nítrico Sintase Tipo III/metabolismo , Álcool Feniletílico/farmacologia , Fosforilação , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Vasodilatadores/farmacologia
13.
Int Immunopharmacol ; 75: 105805, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31401381

RESUMO

Sitagliptin has recently been shown to inhibit inflammatory response in cardiovascular disease. Sirtuin6 (SIRT6), a NAD+-dependent class III histone deacetylase, participates in the regulation of cellular inflammation. We hypothesized that sitagliptin could attenuate vascular inflammation via modulation of SIRT6 pathway. It was found that sitagliptin decreased the expression of monocyte chemotactic protein-1 (MCP-1), interleukin (IL)-6 and IL-1ß, but up-regulated SIRT6 expression, both in mice and in TNF-α-stimulated endothelial cells. Moreover, knockdown of SIRT6 reversed the inhibitory effect of sitagliptin on MCP-1, IL-6 and IL-1ß expression. Further study revealed that sitagliptin also decreased the expression of MCP-1, IL-6 and IL-1ß partly through suppression of reactive oxygen species (ROS). In vivo, hypercholesterolemia in mice was induced by intraperitoneal administration of poloxamer 407 for 1 month. Hyperlipidemia-induced production of MCP-1, IL-6 and IL-1ß was significantly suppressed in the sitagliptin-supplemented animals, but the effect of was abolished by SIRT6 knockout in endothelium. These results indicate that sitagliptin protects against vascular inflammation via the SIRT6/ROS-dependent signaling pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Endotélio Vascular/efeitos dos fármacos , Sirtuínas/genética , Fosfato de Sitagliptina/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Humanos , Hipercolesterolemia/induzido quimicamente , Hipercolesterolemia/metabolismo , Camundongos Transgênicos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
J Leukoc Biol ; 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29522258

RESUMO

Dihydromyricetin (DHM), a bioactive flavonoid component isolated from Ampelopsis grossedentata, is known to have anti-inflammatory effect, but the effect of DHM on acute lung injury (ALI) is largely unknown. Here, we investigated the effect of DHM on ALI and the underlying mechanism by bioinformatic analyses and animal experiments. We found that pretreatment with DHM ameliorated lung pathological changes and suppressed the inflammation response in lung tissues after LPS challenge. The potential targets of DHM were predicted by DDI-CPI and DRAR-CPI tools and analyzed using the STRING server to predict the functionally related signaling pathways, such as MAPK signaling. Molecular docking calculations indicated that DHM could be embedded tightly into the binding pocket of ERK, JNK, and p38. Furthermore, the activation of MAPK signaling induced by LPS was inhibited by DHM. In conclusion, these findings suggest that DHM may exert its protective effect on ALI by inhibiting MAPK signaling. The present study supports a potential clinical application for DHM in treating ALI and provides a novel design that combines in silico methods with in vivo experiments for drug research.

15.
Int J Biol Macromol ; 95: 294-298, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27851929

RESUMO

Injectable hydrogels have a variety of applications, including regenerative medicine, tissue engineering and controlled drug delivery. In this paper, we reported on a pure protein hydrogel based on tetrameric recombinant proteins for the potential drug delivery application. This protein hydrogel was formed instantly by simply mixing two recombinant proteins (ULD-TIP1 and ULD-GGGWRESAI) through the specific protein-peptide interaction. The protein hydrogel was characterized by rheology and scanning electron microscopy (SEM). In vitro cytotoxicity test indicated that the developed protein hydrogel had no apparent cytotoxicity against L-929 cells and HCEC cells after 48h incubation. The formed protein hydrogels was gradually degraded after incubation in phosphate buffered solution (PBS, pH=7.4) for a period of 144h study, as indicated by in vitro degradation test. Encapsulation of model drug (sodium diclofenac; DIC) were achieved by simple mixing of drugs with hydrogelator and the entrapped drugs was almost completely released from hydrogels within 24h via a diffusion manner. As a conclusion, the simple and mild preparation procedure and good biocompatibility of protein hydrogel would render its good promising candidate for drug delivery applications.


Assuntos
Portadores de Fármacos/química , Hidrogéis/química , Proteínas Recombinantes/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Camundongos , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/toxicidade
16.
Immunobiology ; 222(3): 552-561, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27908642

RESUMO

NLRP3 inflammasome not only functions as a critical effector in innate immunity, but also triggers the production of proinflammatory cytokines involved in inflammation-associated diseases. Sirtuin 1 (SIRT1) plays an important role in the regulation of cellular inflammation. However, whether the activation of NLRP3 inflammasome is regulated by SIRT1 remains unknown. In this study, we investigated the regulatory effect of SIRT1 on NLRP3 inflammasome and the underlying mechanisms. We found that lipopolysaccharide (LPS) and adenosine triphosphate (ATP)-induced the activation of NLRP3 inflammasome in human umbilical vein endothelial cells (HUVECs). Activation of SIRT1 inhibited NLRP3 inflammasome activation and subsequent caspase-1 cleavage as well as interleukin (IL)-1ß secretion, whereas SIRT1 knockdown obviously enhanced the activation of NLRP3 inflammasome in HUVECs. Importantly, gene silencing of SIRT1 abrogated the inhibitory effect of SIRT1 activator on NLRP3 inflammasome formation and IL-1ß production in HUVECs stimulated with LPS plus ATP. Further study indicated that cluster of differentiation 40 (CD40) may be involved in the regulation of NLRP3 inflammasome by SIRT1. In vivo studies indicated that implantation of the periarterial carotid collar increased the arterial expression levels of CD40 and CD40 Ligand (CD40L), but inhibited arterial SIRT1 expression in the rabbits. Moreover, treatment with SIRT1 activator decreased CD40 and CD40L levels in collared arteries. Meanwhile, serum IL-1ß level, the marker of inflammasome activation, was also inhibited by SIRT1 activation. Taken together, these findings revealed a novel regulatory mechanism of NLRP3 inflammasome by SIRT1, which may be related to suppression of CD40.


Assuntos
Células Endoteliais/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sirtuína 1/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antígenos CD40/genética , Antígenos CD40/metabolismo , Ligante de CD40/genética , Ligante de CD40/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Modelos Biológicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Coelhos , Transdução de Sinais , Sirtuína 1/genética
17.
Oncotarget ; 8(31): 51447-51461, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28881659

RESUMO

SIRT1, a highly conserved NAD+-dependent protein deacetylase, plays a pivotal role in the pathogenesis and therapy of atherosclerosis (AS). The aim of this study is to investigate the potential effects of SIRT1 on AS in ApoE-/- mice and the underlying mechanisms of autophagy in an ox-LDL-stimulated human monocyte cell line, THP-1. In vivo, the accelerated atherosclerotic progression of mice was established by carotid collar placement; then, mice were treated for 4 weeks with a SIRT1-specific inhibitor, EX-527. The atherosclerotic lesion size of EX-527-treated mice was greatly increased compared to that of the mice in the control group. Immunostaining protocols confirmed that the inhibition of SIRT1 during plaque initiation and progression enhanced the extent of intraplaque macrophage infiltration and impaired the autophagy process. In vitro cultured THP-1 macrophages exposed to ox-LDL were utilized to study the link between the SIRT1 function, autophagy flux, pro-inflammatory cytokine secretion, and foam cell formation using different methods. Our data showed that ox-LDL markedly suppressed SIRT1 protein expression and the autophagy level, while it elevated the MCP-1 production and lipid uptake. Additionally, the application of the SIRT1 inhibitor EX-527 or SIRT1 siRNA further attenuated ox-LDL-induced autophagy inhibition. In conclusion, our results show that the inhibition of SIRT1 promoted atherosclerotic plaque development in ApoE-/- mice by increasing the MCP-1 expression and macrophage accumulation. In particular, we demonstrate that blocking SIRT1 can exacerbate the acetylation of key autophagy machinery, the Atg5 protein, which further regulates the THP-1 macrophage-derived foam cell formation that is triggered by ox-LDL.

18.
Mol Immunol ; 77: 148-56, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27505710

RESUMO

Emerging evidence has indicated that vascular endothelial cells (ECs) not only form the barrier between blood and the vessel wall but also serve as conditional innate immune cells. Our previous study found that SIRT1, a class III histone deacetylase, inhibits the inflammatory response in ECs. Recent studies revealed that SIRT1 also participates in the modulation of immune responses. Although the NLRP3 inflammasome is known to be a crucial component of the innate immune system, there is no direct evidence demonstrating the anti-inflammatory effect of SIRT1 on ECs through the NLRP3 inflammasome. In this study, we observed that lipopolysaccharide (LPS) and adenosine triphosphate (ATP) triggered the activation of NLRP3 inflammasome in human umbilical vein ECs (HUVECs). Moreover, SIRT1 expression was reduced in HUVECs stimulated with LPS and ATP. SIRT1 activator inhibited the expression of monocyte chemotactic protein-1 (MCP-1) and C-reactive protein (CRP), whereas SIRT1 knockdown resulted in significant increases in MCP-1 and CRP levels in HUVECs stimulated with LPS and ATP. Importantly, the lack of SIRT1 enhanced NLRP3 inflammasome activation and subsequent caspase-1 cleavage. On the other hand, NLRP3 siRNA blocked the activation of the NLRP3 inflammasome in HUVECs stimulated with LPS plus ATP. Further study revealed that NLRP3 inflammasome blockade significantly reduced MCP-1 and CRP production in HUVECs. In vivo studies indicated that implantation of the periarterial carotid collar inhibited arterial SIRT1 expression in rabbits. Meanwhile, treatment with a SIRT1 activator decreased the expression levels of MCP-1 and CRP in collared arteries and the interleukin (IL)-1ß level in serum. Taken together, these findings indicate that NLRP3 inflammasome activation promoted endothelial inflammation and that SIRT1 inhibits the inflammatory response partly through regulation of the NLRP3 inflammasome in ECs.


Assuntos
Células Endoteliais/imunologia , Imunidade Inata/imunologia , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Sirtuína 1/imunologia , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana/imunologia , Humanos , Inflamação/imunologia , Masculino , Coelhos , Reação em Cadeia da Polimerase em Tempo Real
19.
Int Immunopharmacol ; 40: 211-218, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27614220

RESUMO

Emerging evidences indicated that NLRP3 inflammasome initiates inflammatory response involved in cardiovascular disease. Nicotinic acid (NA) has been known to possess potential anti-inflammatory property. The aim of this study was to investigate the effect of NA on the activation of NLRP3 inflammasome and the underlying mechanisms. It was found that lipopolysaccharide (LPS) and adenosine triphosphate (ATP) triggered the activation of NLRP3 inflammasome in human umbilical vein endothelial cells (HUVECs). NA inhibited NLRP3 inflammasome activation and subsequent caspase-1 cleavage as well as interleukin (IL)-1ß secretion. Moreover, NA administration up-regulated SIRT1 expression in HUVECs stimulated with LPS plus ATP. Importantly, knockdown of SIRT1 reversed the inhibitory effect of NA on the activation of NLRP3 inflammasome. Further study revealed that NA also decreased the generation of reactive oxygen species (ROS) in HUVECs. In addition, NA inhibited NLRP3 inflammasome activation partly through suppression of ROS. Taken together, these findings indicate that NA is able to regulate the activation of NLRP3 inflammasome in HUVECs, which may be partly mediated by SIRT1 and ROS.


Assuntos
Anti-Inflamatórios/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Niacina/farmacologia , Trifosfato de Adenosina , Caspase 1/metabolismo , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo
20.
J Nutr Biochem ; 26(11): 1338-47, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26300330

RESUMO

Nicotinic acid (NA) has recently been shown to inhibit inflammatory response in cardiovascular disease. Sirtuin1 (SIRT1), a NAD(+)-dependent class III histone deacetylase, participates in the regulation of cellular inflammation. We hypothesized that dietary supplementation of NA could attenuate vascular inflammation via modulation of SIRT1 pathway. New Zealand White rabbits received chow or chow supplemented with 0.6% (wt/wt) NA for 2 weeks. Acute vascular inflammation was induced in the animals by placing a non-occlusive silastic collar around the left common carotid artery. At 24 h after collar implantation, the collar-induced production of C-reactive protein and monocyte chemotactic protein-1 was significantly suppressed in the NA-supplemented animals. Meanwhile, NA also decreased the expression of cluster of differentiation 40 (CD40) and CD40 ligand, but up-regulated SIRT1 expression, both in rabbits and in lipopolysaccharide-stimulated endothelial cells. Moreover, knockdown of SIRT1 reversed the inhibitory effect of NA on CD40 expression. Further study revealed that NA also decreased the expression of CD40 partly through mammalian target of rapamycin. These results indicate that NA protects against vascular inflammation via the SIRT1/CD40-dependent signaling pathway.


Assuntos
Niacina/farmacologia , Sirtuína 1/metabolismo , Vasculite/tratamento farmacológico , Vasculite/metabolismo , Animais , Antígenos CD40/genética , Antígenos CD40/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Interleucina-1beta/sangue , Lipídeos/sangue , Lipopolissacarídeos/farmacologia , Masculino , Coelhos , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/genética , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA