Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 94: 1-10, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37244438

RESUMO

Lung cancer is the leading cause of cancer related death, and is divided into two major histological subtypes, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Histological transformation from NSCLC to SCLC has been reported as a mechanism of treatment resistance in patients who received tyrosine kinase inhibitors (TKIs) targeting EGFR, ALK and ROS1 or immunotherapies. The transformed histology could be due to therapy-induced lineage plasticity or clonal selection of pre-existing SCLC cells. Evidence supporting either mechanism exist in the literature. Here, we discuss potential mechanisms of transformation and review the current knowledge about cell of origin of NSCLC and SCLC. In addition, we summarize genomic alterations that are frequently observed in both "de novo" and transformed SCLC, such as TP53, RB1 and PIK3CA. We also discuss treatment options for transformed SCLC, including chemotherapy, radiotherapy, TKIs, immunotherapy and anti-angiogenic agents.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/etiologia , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/uso terapêutico , Receptores ErbB/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/genética , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/terapia , Mutação
2.
PLoS Genet ; 16(1): e1008588, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31929563

RESUMO

Prostate embryonic development, pubertal and adult growth, maintenance, and regeneration are regulated through androgen signaling-mediated mesenchymal-epithelial interactions. Specifically, the essential role of mesenchymal androgen signaling in the development of prostate epithelium has been observed for over 30 years. However, the identity of the mesenchymal cells responsible for this paracrine regulation and related mechanisms are still unknown. Here, we provide the first demonstration of an indispensable role of the androgen receptor (AR) in sonic hedgehog (SHH) responsive Gli1-expressing cells, in regulating prostate development, growth, and regeneration. Selective deletion of AR expression in Gli1-expressing cells during embryogenesis disrupts prostatic budding and impairs prostate development and formation. Tissue recombination assays showed that urogenital mesenchyme (UGM) containing AR-deficient mesenchymal Gli1-expressing cells combined with wildtype urogenital epithelium (UGE) failed to develop normal prostate tissue in the presence of androgens, revealing the decisive role of AR in mesenchymal SHH responsive cells in prostate development. Prepubescent deletion of AR expression in Gli1-expressing cells resulted in severe impairment of androgen-induced prostate growth and regeneration. RNA-sequencing analysis showed significant alterations in signaling pathways related to prostate development, stem cells, and organ morphogenesis in AR-deficient Gli1-expressing cells. Among these altered pathways, the transforming growth factor ß1 (TGFß1) pathway was up-regulated in AR-deficient Gli1-expressing cells. We further demonstrated the activation of TGFß1 signaling in AR-deleted prostatic Gli1-expressing cells, which inhibits prostate epithelium growth through paracrine regulation. These data demonstrate a novel role of the AR in the Gli1-expressing cellular niche for regulating prostatic cell fate, morphogenesis, and renewal, and elucidate the mechanism by which mesenchymal androgen-signaling through SHH-responsive cells elicits the growth and regeneration of prostate epithelium.


Assuntos
Proteínas Hedgehog/metabolismo , Morfogênese , Próstata/metabolismo , Receptores Androgênicos/metabolismo , Regeneração , Transdução de Sinais , Animais , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Próstata/citologia , Próstata/crescimento & desenvolvimento , Próstata/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
3.
Br J Cancer ; 126(5): 754-763, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34876673

RESUMO

BACKGROUND: Thymic epithelial tumours (TETs) are rare tumours comprised of thymomas and thymic carcinoma. Novel therapies are needed, especially in thymic carcinoma where the 5-year survival rate hovers at 30%. Mesothelin (MSLN), a surface glycoprotein that is cleaved to produce mature MSLN (mMSLN) and megakaryocyte potentiating factor (MPF), is expressed in limited tissues. However, its expression is present in various cancers, including thymic carcinoma, where it is expressed in 79% of cases. METHODS: We utilised flow cytometry, in vitro cytotoxicity assays, and an in vivo xenograft model in order to demonstrate the ability of the MSLN targeting antibody-drug conjugate (ADC) anetumab ravtansine (ARav) in inhibiting the growth of thymic carcinoma. RESULTS: Thymoma and thymic carcinoma cell lines express MSLN, and anetumab, the antibody moiety of ARav, was capable of binding MSLN expressing thymic carcinoma cells and internalising. ARav was effective at inhibiting the growth of thymic carcinoma cells stably transfected with mMSLN in vitro. In vivo, 15 mg/kg ARav inhibited T1889 xenograft tumour growth, while combining 7.5 mg/kg ARav with 4 mg/kg cisplatin yielded an additive effect on inhibiting tumour growth. CONCLUSIONS: These data demonstrate that anetumab ravtansine inhibits the growth of MSLN positive thymic carcinoma cells in vitro and in vivo.


Assuntos
Imunoconjugados/administração & dosagem , Maitansina/análogos & derivados , Mesotelina/genética , Mesotelina/metabolismo , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Timoma/tratamento farmacológico , Neoplasias do Timo/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Imunoconjugados/farmacologia , Maitansina/administração & dosagem , Maitansina/farmacologia , Camundongos , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/metabolismo , Timoma/genética , Timoma/metabolismo , Neoplasias do Timo/genética , Neoplasias do Timo/metabolismo , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
PLoS Genet ; 15(10): e1008451, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658259

RESUMO

E-cadherin complexes with the actin cytoskeleton via cytoplasmic catenins and maintains the functional characteristics and integrity of the epithelia in normal epithelial tissues. Lost expression of E-cadherin disrupts this complex resulting in loss of cell polarity, epithelial denudation and increased epithelial permeability in a variety of tissues. Decreased expression of E-cadherin has also been observed in invasive and metastatic human tumors. In this study, we investigated the effect of E-cadherin loss in prostatic epithelium using newly developed genetically engineered mouse models. Deletion of E-cadherin in prostatic luminal epithelial cells with modified probasin promoter driven Cre (PB-Cre4) induced the development of mouse prostatic intraepithelial neoplasia (PIN). An increase in levels of cytoplasmic and nuclear ß-catenin appeared in E-cadherin deleted atypical cells within PIN lesions. Using various experimental approaches, we further demonstrated that the knockdown of E-cadherin expression elevated free cytoplasmic and nuclear ß-catenin and enhanced androgen-induced transcription and cell growth. Intriguingly, pathological changes representing prostatic epithelial cell denudation and increased apoptosis accompanied the above PIN lesions. The essential role of E-cadherin in maintaining prostatic epithelial integrity and organization was further demonstrated using organoid culture approaches. To directly assess the role of loss of E-cadherin in prostate tumor progression, we generated a new mouse model with bigenic Cdh1 and Pten deletion in prostate epithelium. Early onset, aggressive tumor phenotypes presented in the compound mice. Strikingly, goblet cell metaplasia was observed, intermixed within prostatic tumor lesions of the compound mice. This study provides multiple lines of novel evidence demonstrating a comprehensive role of E-cadherin in maintaining epithelial integrity during the course of prostate oncogenic transformation, tumor initiation and progression.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasia Prostática Intraepitelial/patologia , Neoplasias da Próstata/patologia , Animais , Antígenos CD/genética , Caderinas/genética , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Células Epiteliais , Epitélio , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Cultura Primária de Células , Próstata/citologia , Próstata/patologia , Neoplasia Prostática Intraepitelial/genética , Neoplasias da Próstata/genética , RNA Interferente Pequeno , beta Catenina/genética , beta Catenina/metabolismo
5.
Ecotoxicol Environ Saf ; 246: 114157, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36228361

RESUMO

Microplastics are ubiquitous in the natural environment, especially in waters, and their potential impact is also a key issue of concern. In this study, we used 1 µm, 1000 µg/L, polystyrene (PS-MPs) particles to analyze the effects after exposure for 14 and 28 days in rare minnow (Gobiocypris rarus). Results indicated that PS-MPs induce structural alterations in the intestinal tissue, including epithelial damage, villi damage and the inflammatory cell infiltration, while the changes were severer after exposure for 28 days. Polystyrene microplastics also significantly increased the activities of catalase (CAT, increased 142 % and 385 % in 14d and 28d), superoxide dismutase (SOD, increased 17.76 % and 23.43 % in the 14d and 28d) and the content of malondialdehyde (MDA, increased 14.5 % and 442 % in the 14d and 28d), glutathione (GSH, increased 146 % and 298 % in the 14d and 28d). The results not only showed the characterization of gut microbial communities in rare minnow, but also indicated that microbial diversity and composition were altered in gut of fish exposed to PS-MPs. In the control groups, Proteobacteria (31.36-54.54 %), Actinobacteriota (39.99-52.54 %), Fusobacteriota (1.43-1.78 %), Bacteriadota (0.31-0.57 %) were the four dominant bacterial phyla in the intestinal of rare minnow. After exposure to microplastics, In the gut microbiota, the proportion of Proteobacteria increased 9.27 % and 30 % with exposure time, while Actinobacteria decreased 37.89 % and significantly different after 28 days. In addition, metabolomic analysis suggested that exposure to PS-MPs induced alterations of metabolic profiles in rare minnow and differential metabolites were involved in energy metabolism, inflammatory responsible secretion, oxidative stress, nucleotide and its metabolomics. In conclusion, our findings suggest that long-term exposure to microplastics could induce intestinal inflammation, oxidative stress, microbiota dysbiosis and metabolic disorder in rare minnow, and the alterations and severity were exacerbated by prolonged exposure. This study has extended our cognition of the toxicity of polystyrene, and enriched theoretical data for exploring the toxicological mechanism of microplastics.


Assuntos
Cyprinidae , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Plásticos/metabolismo , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Disbiose/induzido quimicamente , Cyprinidae/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Poluentes Químicos da Água/metabolismo
6.
J Biol Chem ; 295(2): 631-644, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31819003

RESUMO

Co-occurrence of aberrant hepatocyte growth factor (HGF)/MET proto-oncogene receptor tyrosine kinase (MET) and Wnt/ß-catenin signaling pathways has been observed in advanced and metastatic prostate cancers. This co-occurrence positively correlates with prostate cancer progression and castration-resistant prostate cancer development. However, the biological consequences of these abnormalities in these disease processes remain largely unknown. Here, we investigated the aberrant activation of HGF/MET and Wnt/ß-catenin cascades in prostate tumorigenesis by using a newly generated mouse model in which both murine Met transgene and stabilized ß-catenin are conditionally co-expressed in prostatic epithelial cells. These compound mice displayed accelerated prostate tumor formation and invasion compared with their littermates that expressed only stabilized ß-catenin. RNA-Seq and quantitative RT-PCR analyses revealed increased expression of genes associated with tumor cell proliferation, progression, and metastasis. Moreover, Wnt signaling pathways were robustly enriched in prostate tumor samples from the compound mice. ChIP-qPCR experiments revealed increased ß-catenin recruitment within the regulatory regions of the Myc gene in tumor cells of the compound mice. Interestingly, the occupancy of MET on the Myc promoter also appeared in the compound mouse tumor samples, implicating a novel role of MET in ß-catenin-mediated transcription. Results from implanting prostate graft tissues derived from the compound mice and controls into HGF-transgenic mice further uncovered that HGF induces prostatic oncogenic transformation and cell growth. These results indicate a role of HGF/MET in ß-catenin-mediated prostate cancer cell growth and progression and implicate a molecular mechanism whereby nuclear MET promotes aberrant Wnt/ß-catenin signaling-mediated prostate tumorigenesis.


Assuntos
Fator de Crescimento de Hepatócito/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos SCID , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/patologia , Proto-Oncogene Mas
7.
Zoolog Sci ; 37(2): 140-147, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32282145

RESUMO

To elucidate the role of dmrt1 in sex differentiation of a teleost fish Schizothorax kozlovi, the full-length sequences of its cDNA and promoter were cloned by rapid amplification of cDNA ends (RACE) and genome walking. The relative mRNA expression levels were determined by quantitative real-time PCR (RT-PCR). The 1095-bp dmrt1 cDNA was predicted to encode a protein of 264 amino acids. It was expressed only in the gonads, and the expression was 17-times higher in the testis than in the ovary. The 1215-bp promoter sequence of dmrt1 was cloned and analyzed to detect sex-related differences in its methylation levels. A significant negative relationship between the dmrt1 expression and CpG methylation of its promoter were found in the testes and ovaries of S. kozlovi. Significant differences in dmrt1 expression levels were also found between the larval and juvenile stages. No significant differences in expression were found during the entire larval stage, and in the individuals among three different temperature groups (10°C, 14°C, and 18°C). Considering that the sex of sampled larval fish cannot be distinguished, correlations between dmrt1 expression and effects of temperature on sex differentiation in S. kozlovi need further study.


Assuntos
Ilhas de CpG/fisiologia , Cyprinidae/genética , Diferenciação Sexual/genética , Sequência de Aminoácidos , Animais , Cyprinidae/crescimento & desenvolvimento , DNA Complementar/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Larva/metabolismo , Masculino , Metilação , Ovário/metabolismo , Regiões Promotoras Genéticas/fisiologia , RNA Mensageiro , Análise de Sequência de DNA , Processos de Determinação Sexual/genética , Temperatura , Testículo/metabolismo
8.
Differentiation ; 107: 1-10, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30927641

RESUMO

Androgen signaling is essential for prostate development, morphogenesis, and regeneration. Emerging evidence also indicates a regulatory role of Notch signaling in prostate development, differentiation, and growth. However, the collaborative regulatory mechanisms of androgen and Notch signaling during prostate development, growth, and regeneration are largely unknown. Hairy and Enhancer of Split 1 (Hes1) is a transcriptional regulator of Notch signaling pathways, and its expression is responsive to Notch signaling. Hes1-expressing cells have been shown to possess the regenerative capability to repopulate a variety of adult tissues. In this study, we developed new mouse models to directly assess the role of the androgen receptor in prostatic Hes1-expressing cells. Selective deletion of AR expression in embryonic Hes1-expressing cells impeded early prostate development both in vivo and in tissue xenograft experiments. Prepubescent deletion of AR expression in Hes1-expressing cells resulted in prostate glands containing abnormalities in cell morphology and gland architecture. A population of castration-resistant Hes1-expressing cells was revealed in the adult prostate, with the ability to repopulate prostate epithelium following androgen supplementation. Deletion of AR in Hes1-expressing cells diminishes their regenerative ability. These lines of evidence demonstrate a critical role for the AR in Notch-responsive cells during the course of prostate development, morphogenesis, and regeneration, and implicate a mechanism underlying interaction between the androgen and Notch signaling pathways in the mouse prostate.


Assuntos
Próstata/fisiologia , Receptores Notch/metabolismo , Regeneração , Fatores de Transcrição HES-1 , Androgênios/metabolismo , Animais , Masculino , Camundongos , Modelos Animais , Próstata/embriologia , Receptores Androgênicos/metabolismo , Transdução de Sinais , Fatores de Transcrição HES-1/biossíntese , Fatores de Transcrição HES-1/genética
9.
J Biol Chem ; 293(52): 20123-20136, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30401749

RESUMO

Emerging evidence has shown that the hepatocyte growth factor (HGF) and its receptor, MET proto-oncogene, receptor tyrosine kinase (MET), promote cell proliferation, motility, morphogenesis, and angiogenesis. Whereas up-regulation of MET expression has been observed in aggressive and metastatic prostate cancer, a clear understanding of MET function in prostate tumorigenesis remains elusive. Here, we developed a conditional Met transgenic mouse strain, H11Met/+:PB-Cre4, to mimic human prostate cancer cells with increased MET expression in the prostatic luminal epithelium. We found that these mice develop prostatic intraepithelial neoplasia after HGF administration. To further assess the biological role of MET in prostate cancer progression, we bred H11Met/+/PtenLoxP/LoxP:PBCre4 compound mice, in which transgenic Met expression and deletion of the tumor suppressor gene Pten occurred simultaneously only in prostatic epithelial cells. These compound mice exhibited accelerated prostate tumor formation and invasion as well as increased metastasis compared with PtenLoxP/LoxP:PB-Cre4 mice. Moreover, prostatic sarcomatoid carcinomas and lesions resembling the epithelial-to-mesenchymal transition developed in tumor lesions of the compound mice. RNA-Seq and qRT-PCR analyses revealed a robust enrichment of known tumor progression and metastasis-promoting genes in samples isolated from H11Met/+/PtenLoxP/LoxP:PB-Cre4 compound mice compared with those from PtenLoxP/LoxP:PB-Cre4 littermate controls. HGF-induced cell proliferation and migration also increased in mouse embryonic fibroblasts (MEFs) from animals with both Met transgene expression and Pten deletion compared with Pten-null MEFs. The results from these newly developed mouse models indicate a role for MET in hastening tumorigenesis and metastasis when combined with the loss of tumor suppressors.


Assuntos
Transformação Celular Neoplásica/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Fator de Crescimento de Hepatócito/genética , Masculino , Camundongos , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-met/genética
10.
Clin Gastroenterol Hepatol ; 17(8): 1597-1606.e5, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30391434

RESUMO

BACKGROUND & AIMS: Rectal indomethacin and spraying of the duodenal papilla with epinephrine might reduce the incidence of pancreatitis after endoscopic retrograde cholangiopancreatography (ERCP). We performed a randomized trial to compare the effects of the combination of indomethacin and epinephrine (IE) vs indomethacin plus saline (IS) in prophylaxis of post-ERCP pancreatitis (PEP). METHODS: We performed a double-blind trial at 10 centers in China, from February 2017 to October 2017, of 1158 patients with native papilla undergoing ERCP. The patients were assigned randomly to groups given IE (n = 576) or IS (n = 582). All patients received a single dose of rectal indomethacin within 30 minutes before ERCP; 20 mL of dilute epinephrine (IE group) or saline (IS group) then was sprayed on the duodenal papilla at the end of ERCP. The primary outcome was the incidence of overall PEP. Data were analyzed on an intention-to-treat principle. RESULTS: The study was terminated at the interim analysis for safety concerns and futility. The groups had similar baseline characteristics. PEP developed in 49 patients in the IE group (8.5%) and in 31 patients in the IS group (5.3%) (relative risk, 1.60, 95% CI, 1.03-2.47; P = .033). There were no significant differences between groups in proportions of patients with postsphincterotomy bleeding (2.1% in the IE group and 1.5% in the IS group) and biliary infection (1.2% in the IE group and 2.2% in the IS group). CONCLUSIONS: In a randomized trial, we found the combination of rectal indomethacin with papillary epinephrine spraying increased the risk of PEP compared with indomethacin alone. Spray epinephrine should not be used with rectal indomethacin for prevention of post-ERCP pancreatitis. ClincialTrials.gov no: NCT03057769.


Assuntos
Colangiopancreatografia Retrógrada Endoscópica/efeitos adversos , Epinefrina/administração & dosagem , Indometacina/administração & dosagem , Pancreatite/etiologia , Medição de Risco/métodos , Administração Retal , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ampola Hepatopancreática , China/epidemiologia , Método Duplo-Cego , Quimioterapia Combinada , Epinefrina/efeitos adversos , Feminino , Seguimentos , Humanos , Incidência , Indometacina/efeitos adversos , Masculino , Pessoa de Meia-Idade , Pancreatite/diagnóstico , Pancreatite/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Irrigação Terapêutica/efeitos adversos , Adulto Jovem
11.
Stem Cells ; 36(6): 891-902, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29451339

RESUMO

Androgen signaling is essential for prostate development, morphogenesis, and regeneration. Emerging evidence indicates that Wnt/ß-catenin signaling also contributes to prostate development specifically through regulation of cell fate determination. Prostatic Axin2-expressing cells are able to respond to Wnt signals and possess the progenitor properties to regenerate prostatic epithelium. Despite critical roles of both signaling pathways, the biological significance of androgen receptor (AR) in Axin2-expressing/Wnt-responsive cells remains largely unexplored. In this study, we investigated this important question using a series of newly generated mouse models. Deletion of Ar in embryonic Axin2-expressing cells impaired early prostate development in both ex vivo and tissue implantation experiments. When Ar expression was deleted in prostatic Axin2-expressing cells at pre-puberty stages, it results in smaller and underdeveloped prostates. A subpopulation of Axin2 expressing cells in prostate epithelium is resistant to castration and, following androgen supplementation, is capable to expand to prostatic luminal cells. Deletion of Ar in these Axin2-expressing cells reduces their regenerative ability. These lines of evidence demonstrate an indispensable role for the Ar in Wnt-responsive cells during the course of prostate development, morphogenesis, and regeneration, which also imply an underlying interaction between the androgen and Wnt signaling pathways in the mouse prostate. Stem Cells 2018;36:891-902.


Assuntos
Próstata/fisiologia , Receptores Androgênicos/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Proliferação de Células , Humanos , Masculino , Morfogênese , Regeneração
12.
Biochim Biophys Acta ; 1863(9): 2311-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27316454

RESUMO

Ubiquitination, a post-translational modification, involves the covalent attachment of ubiquitin to the target protein. The ubiquitin-proteasome pathway and the endosome-lysosome pathway control the degradation of the majority of eukaryotic proteins. Our previous study illustrated that δ-catenin ubiquitination occurs in a glycogen synthase kinase-3 (GSK-3) phosphorylation-dependent manner. However, the molecular mechanism of δ-catenin ubiquitination is still unknown. Here, we show that the lysine residues required for ubiquitination are located mainly in the C-terminal portion of δ-catenin. In addition, we provide evidence that ß-TrCP-1 interacts with δ-catenin and functions as an E3 ligase, mediating δ-catenin ubiquitin-proteasome degradation. Furthermore, we prove that both the ubiquitin-proteasome pathway and the lysosome degradation pathway are involved in δ-catenin degradation. Our novel findings on the mechanism of δ-catenin ubiquitination will add a new perspective to δ-catenin degradation and the effects of δ-catenin on E-cadherin involved in epithelial cell-cell adhesion, which is implicated in prostate cancer progression.


Assuntos
Cateninas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Sequência de Aminoácidos , Cateninas/química , Linhagem Celular , Cromatografia Líquida , Regulação para Baixo , Humanos , Lisina/metabolismo , Lisossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Espectrometria de Massas em Tandem , Ubiquitina/metabolismo , delta Catenina
13.
Hum Genet ; 136(5): 485-497, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28138773

RESUMO

China has repeatedly been the subject of genetic studies to elucidate its prehistoric and historic demography. While some studies reported a genetic distinction between Northern and Southern Han Chinese, others showed a more clinal picture of small differences within China. Here, we investigated the distribution of Y chromosome variation along administrative as well as ethnic divisions in the mainland territory of the People's Republic of China, including 28 administrative regions and 19 recognized Chinese nationalities, to assess the impact of recent demographic processes. To this end, we analyzed 37,994 Y chromosomal 17-marker haplotype profiles from the YHRD database with respect to forensic diversity measures and genetic distance between groups defined by administrative boundaries and ethnic origin. We observed high diversity throughout all Chinese provinces and ethnicities. Some ethnicities, including most prominently Kazakhs and Tibetans, showed significant genetic differentiation from the Han and other groups. However, differences between provinces were, except for those located on the Tibetan plateau, less pronounced. This discrepancy is explicable by the sizeable presence of Han speakers, who showed high genetic homogeneity all across China, in nearly all studied provinces. Furthermore, we observed a continuous genetic North-South gradient in the Han, confirming previous reports of a clinal distribution of Y chromosome variation and being in notable concordance with the previously observed spatial distribution of autosomal variation. Our findings shed light on the demographic changes in China accrued by a fast-growing and increasingly mobile population.


Assuntos
Povo Asiático/genética , Cromossomos Humanos Y/genética , Haplótipos , China , Variação Genética , Genética Populacional , Técnicas de Genotipagem , Humanos , Masculino , Repetições de Microssatélites
15.
BMC Microbiol ; 16(1): 191, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27549138

RESUMO

BACKGROUND: Largemouth bronze gudgeon (Coreius guichenoti) is of economic importance in China, distributed in upstream regions of the Yangtze River in China. But it has recently dramatically declined and is close to elimination. However, there is little knowing about the character of its intestinal microbiota. This study was conducted to elucidate the intestinal microbiota of wild largemouth bronze gudgeon with different body weight and gender. RESULTS: Thirty wild largemouth bronze gudgeon were measured for body length and body weight, and identified for male and female according to gonadal development, and thereafter the intestinal microbiota's were assessed by MiSeq sequencing of 16S rRNA genes. The results revealed that phyla Proteobacteria and Tenericutes were dominant in wild largemouth bronze gudgeon intestine independent of the body weight. Shannon's and Inverse Simpson's diversity indexes were significant (P < 0.05) different between male and female fish. The phylum profile in the intestine of male fish revealed that phylum Proteobacteria was dominant, in contrast to female fish where five phyla Tenericutes, Proteobacteria, Firmicutes, Fusobacteria and Spirochaetes were dominant. The genus profile revealed that genera Shewanella and Unclassified bacteria were dominant in male fish, while genus Mycoplasma was dominant in female fish. CONCLUSIONS: Our results revealed that the intestinal microbial community of wild largemouth bronze gudgeon was dominated by the phyla Proteobacteria and Tenericutes regardless of the different body weight, but the communities are significant different between male and female fish. These results provide a theoretical basis to understand the biological mechanisms relevant to the protection of the endangered fish species.


Assuntos
Bactérias/classificação , Peso Corporal/fisiologia , Cyprinidae/microbiologia , Intestinos/microbiologia , Consórcios Microbianos , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Sequência de Bases , China , Cyprinidae/anatomia & histologia , DNA Bacteriano/genética , Feminino , Microbioma Gastrointestinal , Masculino , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Rios , Análise de Sequência de DNA
16.
Biochim Biophys Acta ; 1843(4): 758-68, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24412473

RESUMO

Although δ-catenin was first considered as a brain specific protein, strong evidence of δ-catenin overexpression in various cancers, including prostate cancer, has been accumulated. Phosphorylation of δ-catenin by Akt and GSK3ß has been studied in various cell lines. However, tyrosine phosphorylation of δ-catenin in prostate cancer cells remains unknown. In the current study, we demonstrated that Src kinase itself phosphorylates δ-catenin on its tyrosine residues in prostate cancer cells and further illustrated that Y1073, Y1112 and Y1176 of δ-catenin are predominant sites responsible for tyrosine phosphorylation mediated by c-Src. Apart from c-Src, other Src family kinases, including Fgr, Fyn and Lyn, can also phosphorylate δ-catenin. We also found that c-Src-mediated Tyr-phosphorylation of δ-catenin increases its stability via decreasing its affinity to GSK3ß and enhances its ability of inducing nuclear distribution of ß-catenin through interrupting the integrity of the E-cadherin. Taken together, these results indicate that c-Src can enhance the oncogenic function of δ-catenin in prostate cancer cells.


Assuntos
Cateninas/metabolismo , Neoplasias da Próstata/metabolismo , beta Catenina/metabolismo , Quinases da Família src/metabolismo , Animais , Proteína Tirosina Quinase CSK , Cateninas/genética , Linhagem Celular Tumoral , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Masculino , Camundongos , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tirosina/genética , beta Catenina/genética , delta Catenina
17.
Cell Biol Int ; 39(8): 954-61, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25808920

RESUMO

δ-Catenin and ß-catenin belong to different subfamilies of armadillo proteins but share some common binding partners, such as E-cadherin. This is the first study that demonstrated a novel common binding partner for δ-catenin and ß-catenin, lymphoid enhancer factor-1 (LEF-1). We found that the N-terminus of δ-catenin (amino acids 85-325) bound to the middle region of LEF-1 unlike ß-catenin. Overexpressed δ-catenin entered the nucleus and inhibited LEF-1-mediated transcriptional activity in Bosc23 and DLD-1 cell lines. The current study provided novel insights that will provide a better understanding of the effects of δ-catenin on Wnt/LEF-1-mediated transcriptional activity.


Assuntos
Cateninas/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Cateninas/genética , Linhagem Celular , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Transcrição Gênica , Proteínas Wnt/metabolismo , delta Catenina
18.
J Nanosci Nanotechnol ; 15(8): 5589-92, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26369122

RESUMO

δ-Catenin induces dendritic morphogenesis in several cells and it was reported that deletion of C-terminal 207 amino acid of δ-catenin completely abolished the dendritic morphogenesis. However, exact domain responsible for inducing dendritic morphogenesis in C-terminus of δ-catenin was not mapped. Here, we report that expression of ΔC47 (lacking 47 amino acid of C-terminus: 1-1200), ΔC77 (lacking 77 amino acid of C-terminus: 1-1170) deletion mutants of δ-catenin induced the dendritic morphogenesis of HEK293T and NIH3T3 cells as full-length δ-catenin did. In agreement with previous report, ΔC207 deletion mutant did not show the dendritic morphogenesis of the cells. Interestingly, introducing 107 amino acid deletion of C-terminus (ΔC107 mutant: 1-1140) and 177 amino acid deletion of C-terminus (ΔC177 mutant: 1-1070) showed limited primary and secondary dendritic process and notable spine-like process formation. These results suggest that 1140-1170 amino acid of C-terminal δ-catenin is required for primary and secondary dendrite-like process formation.


Assuntos
Dendritos/fisiologia , Dendritos/ultraestrutura , Morfogênese/fisiologia , alfa Catenina/química , alfa Catenina/metabolismo , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Células NIH 3T3 , Relação Estrutura-Atividade , alfa Catenina/genética
19.
Mar Drugs ; 14(1): 6, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26729136

RESUMO

Polysaccharides from marine clams perform various biological activities, whereas information on structure is scarce. Here, a water-soluble polysaccharide MMPX-B2 was isolated from Meretrix meretrix Linnaeus. The proposed structure was deduced through characterization and its immunological activity was investigated. MMPX-B2 consisted of d-glucose and d-galctose residues at a molar ratio of 3.51:1.00. The average molecular weight of MMPX-B2 was 510 kDa. This polysaccharide possessed a main chain of (1→4)-linked-α-d-glucopyranosyl residues, partially substituted at the C-6 position by a few terminal ß-d-galactose residues or branched chains consisting of (1→3)-linked ß-d-galactose residues. Preliminary immunological tests in vitro showed that MMPX-B2 could stimulate the murine macrophages to release various cytokines, and the structure-activity relationship was then established. The present study demonstrated the potential immunological activity of MMPX-B2, and provided references for studying the active ingredients in M. meretrix.


Assuntos
Adjuvantes Imunológicos/química , Polissacarídeos/química , Adjuvantes Imunológicos/farmacologia , Animais , Bivalves , Macrófagos/efeitos dos fármacos , Camundongos , Polissacarídeos/imunologia , Polissacarídeos/farmacologia , Água do Mar , Relação Estrutura-Atividade
20.
J Therm Biol ; 46: 24-30, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25455937

RESUMO

Effect of rearing temperature on growth and thermal tolerance of Schizothorax (Racoma) kozlovi Nikolsky larvae and juveniles was investigated. The fish (start at 12d post hatch) were reared for nearly 6 months at five constant temperatures of 10, 14, 18, 22 and 26°C. Then juvenile fish being acclimated at three temperatures of 14, 18 and 22°C were chosen to determine their critical thermal maximum (CTMax) and lethal thermal maximum (LTMax) by using the dynamic method. Growth rate of S. kozlovi larvae and juveniles was significantly influenced by temperature and fish size, exhibiting an increase with increased rearing temperature, but a decline with increased fish size. A significant ontogenetic variation in the optimal temperatures for maximum growth were estimated to be 24.7°C and 20.6°C for larvae and juveniles of S. kozlovi, respectively. The results also demonstrated that acclimation temperature had marked effects on their CTMax and LTMax, which ranged from 32.86°C to 34.54°C and from 33.79°C to 34.80°C, respectively. It is suggested that rearing temperature must never rise above 32°C for its successful aquaculture. Significant temperature effects on the growth rate and thermal tolerance both exhibit a plasticity pattern. Determination of critical heat tolerance and optima temperature for maximum growth of S. kozlovi is of ecological significance in the conservation and aquaculture of this species.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Cyprinidae/crescimento & desenvolvimento , Cyprinidae/fisiologia , Aclimatação/fisiologia , Adaptação Fisiológica/fisiologia , Envelhecimento/fisiologia , Animais , Cyprinidae/embriologia , Larva/crescimento & desenvolvimento , Larva/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA