Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Environ Res ; 220: 115172, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584849

RESUMO

In alkaline soil, abundant carbonates will mobilize uranium (U) and increase its ecotoxicity, which is a serious threat to crop growth. However, the knowledge of U remediation in alkaline soils remains very limited. In this study, U-contaminated alkaline soil (tillage layer) was collected from the Ili mining area of Xinjiang, the soil remediation was carried out by using phosphorus (P) fertilizers of different solubility (including KH2PO4, Ca(H2PO4)2, CaHPO4, and Ca3(PO4)2), and the pathways and mechanisms of U passivation in the alkaline soil were revealed. The results showed that water-soluble P fertilizers, KH2PO4 and Ca(H2PO4)2, were highly effective at immobilizing U, and significantly reduced the bioavailability of soil U. The exchangeable U was reduced by 70.5 ± 0.1% (KH2PO4) and 68.2 ± 1.9% (Ca(H2PO4)2), which was converted into the Fe-Mn oxide-bound and residual phases. Pot experiments showed that soil remediation by KH2PO4 significantly promoted crop growth, especially for roots, and reduced U uptake in crops by 94.5 ± 1.0%. The immobilization of U by KH2PO4 could be attributed to the release of phosphate anions, which react with the uranyl ion (UO22+) forming a stable mineral of meta-ankoleite and enhancing the binding of UO22+ to the soil Fe-Mn oxides. In addition, KH2PO4 dissolution produces acidity and P fertilizer, which can reduce soil alkalinity and improve crop growth. The findings in this work demonstrate that a rational application of P fertilizer can effectively, conveniently, and cheaply remediate U contamination and improve crop yield and safety on alkaline farmland.


Assuntos
Poluentes do Solo , Urânio , Fósforo , Fertilizantes/análise , Poluentes do Solo/análise , Solo
2.
Microb Ecol ; 78(3): 555-564, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30903203

RESUMO

The intertidal zone is an important buffer and a nitrogen sink between land and sea. Ammonia oxidation is the rate-limiting step of nitrification, conducted by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, it remains a debatable issue regarding dominant ammonia oxidizers in this region, and environmental factors driving their spatiotemporal niche differentiation have yet to be identified. In this study, intertidal and subtidal zones of Zhoushan Islands were selected for seasonal sampling. Ammonia-oxidizing activity, quantitative PCR, and 454 high-throughput sequencing were performed to study the nitrification potential, abundance, and community structure of ammonia-oxidizing archaea and bacteria. AOA and AOB amoA abundance (107-108amoA gene copies/g dry weight sediment) varied spatiotemporally independently of environmental factors. AOA surpassed AOB in most samples, driven by sediment temperature, moisture, and total nitrogen. The diversity of both AOA and AOB differed spatiotemporally. The Nitrosopumilus and Nitrosospira clusters accounted for an absolutely dominant percentage of AOA (> 99%) and AOB (> 99%) respectively, indicating a negligible contribution of other clusters to ammonia oxidation. However, there was no significant correlation between nitrification potential and the abundance of AOA or AOB. Overall, the present study showed that AOA dominated over AOB spatiotemporally in the intertidal zone of Zhoushan Islands due to fluctuations in environmental factors, and the Nitrosopumilus and Nitrosospira clusters ecologically succeeded in the intertidal zone of Zhoushan Islands.


Assuntos
Archaea/isolamento & purificação , Betaproteobacteria/isolamento & purificação , Sedimentos Geológicos/microbiologia , Amônia/metabolismo , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Betaproteobacteria/classificação , Betaproteobacteria/genética , Betaproteobacteria/metabolismo , China , Ecossistema , Ilhas , Nitrificação , Oxirredução , Filogenia
3.
Appl Microbiol Biotechnol ; 101(21): 8007-8014, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28948330

RESUMO

Nitrite-dependent anaerobic methane oxidation (N-DAMO), which couples anaerobic methane oxidation and nitrite reduction, is a recently discovered bioprocess coupling microbial nitrogen and carbon cycles. The discovery of this microbial process challenges the traditional knowledge of global methane sinks and nitrogen losses. In this study, the abundance and activity of N-DAMO bacteria were investigated and their contributions to methane sink and nitrogen loss were estimated in different seasons and different partitions of an intertidal zone of the East China Sea. The results showed that N-DAMO bacteria were extensively and continuously present in the intertidal zone, with the number of cells ranging from 5.5 × 104 to 2.8 × 105 copy g-1 soil and the potential activity ranging from 0.52 to 5.7 nmol CO2 g-1 soil day-1, contributing 5.0-36.6% of nitrite- and sulfate-dependent anaerobic methane oxidation in the intertidal zone. The N-DAMO activity and its contribution to the methane consumption were highest in the spring and in the low intertidal zone. These findings showed that the N-DAMO process is an important methane and nitrogen sink in the intertidal zone and varies with the seasons and the partitions of the intertidal zone.


Assuntos
Metano/metabolismo , Methylococcaceae/isolamento & purificação , Methylococcaceae/metabolismo , Nitritos/metabolismo , Microbiologia do Solo , Anaerobiose , Carga Bacteriana , China , Methylococcaceae/classificação , Oceanos e Mares , Estações do Ano , Análise Espaço-Temporal
4.
Proc Natl Acad Sci U S A ; 111(12): 4495-500, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24616523

RESUMO

The process of nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and shown to be mediated by "Candidatus Methylomirabilis oxyfera" (M. oxyfera). Here, evidence for n-damo in three different freshwater wetlands located in southeastern China was obtained using stable isotope measurements, quantitative PCR assays, and 16S rRNA and particulate methane monooxygenase gene clone library analyses. Stable isotope experiments confirmed the occurrence of n-damo in the examined wetlands, and the potential n-damo rates ranged from 0.31 to 5.43 nmol CO2 per gram of dry soil per day at different depths of soil cores. A combined analysis of 16S rRNA and particulate methane monooxygenase genes demonstrated that M. oxyfera-like bacteria were mainly present in the deep soil with a maximum abundance of 3.2 × 10(7) gene copies per gram of dry soil. It is estimated that ∼0.51 g of CH4 m(-2) per year could be linked to the n-damo process in the examined wetlands based on the measured potential n-damo rates. This study presents previously unidentified confirmation that the n-damo process is a previously overlooked microbial methane sink in wetlands, and n-damo has the potential to be a globally important methane sink due to increasing nitrogen pollution.


Assuntos
Anaerobiose , Bactérias/metabolismo , Metano/metabolismo , Áreas Alagadas , Bactérias/classificação , Bactérias/genética , Genes Bacterianos , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
5.
Appl Microbiol Biotechnol ; 100(11): 5099-108, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27020287

RESUMO

Anaerobic oxidation of methane (AOM) coupled to nitrite reduction (AOM-NIR) is ecologically significant for mitigating the methane-induced greenhouse effect. The microbes responsible for this reaction, NC10 bacteria, have been widely detected in diverse ecosystems. However, some defects were discovered in the commonly used NC10-specific primers, 202F and qP1F. In the present work, the primers were redesigned and improved to overcome the defects found in the previous primers. A new nested PCR method was developed using the improved primers to amplify 16S ribosomal RNA (rRNA) genes from NC10 bacteria. In the new nested PCR method, the qP1mF/1492R and 1051F/qP2R primer sets were used in the first and second rounds, respectively. The PCR products were sequenced, and more operational taxonomic units (OTUs) of the NC10 phylum were obtained using the new primers compared to the previous primers. The sensitivity of the new nested PCR was tested by the serial dilution method, and the limit of detection was approximately 10(3) copies g(-1) dry sed. for the environmental samples compared to approximately 10(5) copies g(-1) dry sed. by the previous method. Finally, the improved primer, qP1mF, was used in quantitative PCR (qPCR) to determine the abundance of NC10 bacteria, and the results agreed well with the activity of AOM-NIR measured by isotope tracer experiments. The improved primers are able to amplify NC10 16S rRNA genes more efficiently than the previous primers and useful to explore the microbial community of the NC10 phylum in different systems.


Assuntos
Bactérias/classificação , Bactérias/genética , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/isolamento & purificação , Clonagem Molecular , Primers do DNA/genética , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Genes Bacterianos , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Nitritos/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA
6.
Appl Microbiol Biotechnol ; 100(16): 7171-80, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27225473

RESUMO

In the current study, we investigated nitrite-dependent anaerobic methane oxidation (N-DAMO) as a potential methane sink in the Hangzhou Bay and the adjacent Zhoushan sea area. The potential activity of the N-DAMO process was primarily observed in Hangzhou Bay by means of (13)C-labeling experiments, whereas very low or no potential N-DAMO activity could be detected in the Zhoushan sea area. The measured potential N-DAMO rates ranged from 0.2 to 1.3 nmol (13)CO2 g(-1) (dry sediment) day(-1), and the N-DAMO potentially contributed 2.0-9.4 % to the total microbial methane oxidation in the examined sediments. This indicated that the N-DAMO process may be an alternative pathway in the coastal methane cycle. Phylogenetic analyses confirmed the presence of Candidatus Methylomirabilis oxyfera-like bacteria in all the examined sediments, while the group A members (the dominant bacteria responsible for N-DAMO) were found mainly in Hangzhou Bay. Quantitative PCR showed that the 16S rRNA gene abundance of Candidatus M. oxyfera-like bacteria varied from 5.4 × 10(6) to 5.0 × 10(7) copies g(-1) (dry sediment), with a higher abundance observed in Hangzhou Bay. In addition, the overlying water NO3 (-) concentration and salinity were identified as the most important factors influencing the abundance and potential activity of Candidatus M. oxyfera-like bacteria in the examined sediments. This study showed the evidence of N-DAMO in coastal environments and indicated the importance of N-DAMO as a potential methane sink in coastal environments.


Assuntos
Bactérias/metabolismo , Baías/microbiologia , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Nitratos/química , Nitritos/química , Anaerobiose , Sequência de Bases , DNA Bacteriano/genética , Marcação por Isótopo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Análise de Sequência de DNA , Microbiologia do Solo
7.
Appl Environ Microbiol ; 81(16): 5538-45, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26048927

RESUMO

Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 µM for methane and 8.7 ± 1.5 µM for nitrite.


Assuntos
Organismos Aquáticos/metabolismo , Bactérias/metabolismo , Metano/metabolismo , Nitritos/metabolismo , Anaerobiose , Organismos Aquáticos/classificação , Organismos Aquáticos/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Sedimentos Geológicos/microbiologia , Consórcios Microbianos , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo
8.
Appl Microbiol Biotechnol ; 99(2): 939-46, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25186148

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-damo) is a newly discovered biological process that couples anaerobic oxidation of methane (AOM) to nitrite reduction. In this study, three different inocula, methanogenic sludge, paddy soil, and freshwater sediment were used to enrich n-damo bacteria in three sequencing batch reactors (SBRs), and three n-damo enrichment cultures, C1, C2 and C3, were obtained, respectively. After 500 days of incubation, Methylomirabilis oxyfera-like bacteria and n-damo activities were observed in cultures C1, C2, and C3, and the specific activities were 0.8 ± 0.1, 1.4 ± 0.1, and 1.0 ± 0.1 µmol CH4 h(-1) g(-1) VSS, respectively. The copy numbers of 16S rRNA genes from cultures C1, C2, and C3 were 5.0 ± 0.4 × 10(8), 6.1 ± 0.1 × 10(9), and 1.0 ± 0.2 × 10(9) copies g(-1) dry weight, respectively. The results indicated that paddy soil is an excellent inoculum for n-damo bacterial enrichment. This work expanded the alternative source of n-damo inoculum and benefited the further research of n-damo process.


Assuntos
Bactérias Anaeróbias/metabolismo , Metano/metabolismo , Nitritos/metabolismo , Bactérias Anaeróbias/classificação , Reatores Biológicos , China , Clonagem Molecular , DNA Bacteriano/genética , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Hibridização in Situ Fluorescente , Microscopia Eletrônica de Transmissão , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Esgotos/microbiologia , Microbiologia do Solo
9.
Appl Microbiol Biotechnol ; 99(24): 10853-60, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26342737

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-damo) is a newly discovered bioprocess that reduces nitrite to dinitrogen with methane as electron donor, which has promising potential to remove nitrogen from wastewater. In this work, a lab-scale sequencing batch reactor (SBR) was operated for 609 days with methane as the sole external electron donor. In the SBR, nitrite in synthetic wastewater was removed continuously; the final volumetric nitrogen removal rate was 12.22±0.02 mg N L(-1) day(-1) and the percentage of nitrogen removal was 98.5 ± 0.2 %. Microbial community analysis indicated that denitrifying methanotrophs dominated (60-70 %) the population of the final sludge. Notably, activity testing and microbial analysis both suggested that heterotrophic denitrifiers existed in the reactor throughout the operation period. After 609 days, the activity testing indicated the nitrogen removal percentage of heterotrophic denitrification was 17 ± 2 % and that of n-damo was 83 ± 2 %. A possible mutualism may be developed between the dominated denitrifying methanotrophs and the associated heterotrophs through cross-feed. Heterotrophs may live on the microbial products excreted by denitrifying methanotrophs and provide growth factors that are required by denitrifying methanotrophs.


Assuntos
Reatores Biológicos/microbiologia , Desnitrificação , Metano/metabolismo , Nitrogênio/metabolismo , Águas Residuárias/microbiologia , Anaerobiose , Biota , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Appl Microbiol Biotechnol ; 99(20): 8587-96, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26099334

RESUMO

Ammonia oxidation is performed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Few studies compared the adaptability of AOA and AOB for oxygenated/hypoxic alternant conditions in water-level-fluctuating zones. Here, using qPCR and 454 high-throughput sequencing of functional amoA genes of AOA and AOB, we examined the changes of abundances, diversities, and community structures of AOA and AOB in periodically flooded soils compared to the non-flooded soils in Three Gorges Reservoir. The increased AOA operational taxonomic unit (OTU) numbers and the higher ratios of abundance (AOA:AOB) in the periodically flooded soils suggested AOA have better adaptability for oxygenated/hypoxic alternant conditions in the water-level-fluctuating zones in the Three Gorges Reservoir and probably responsible for the ammonia oxidation there. Canonical correspondence analysis (CCA) showed that oxidation-reduction potential (ORP) had the most significant effect on the community distribution of AOA (p < 0.01). Pearson analysis also indicated that ORP was the most important factor influencing the abundances and diversities of ammonia-oxidizing microbes. ORP was significantly negatively correlated with AOA OTU numbers (p < 0.05), ratio of OTU numbers (AOA:AOB) (p < 0.01), and ratio of amoA gene abundances (AOA:AOB) (p < 0.05). ORP was also significantly positively correlated with AOB abundance (p < 0.05).


Assuntos
Amônia/metabolismo , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Variação Genética , Microbiologia do Solo , Adaptação Biológica , Aerobiose , Anaerobiose , Archaea/metabolismo , Bactérias/metabolismo , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Oxirredução , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
11.
Appl Microbiol Biotechnol ; 99(1): 349-57, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25242345

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-damo) is a recently discovered process that is catalysed by "Candidatus Methylomirabilis oxyfera". In the present study, the vertical distribution (0-10, 20-30, 50-60 and 90-100 cm) of M. oxyfera-like bacteria was investigated in Xiazhuhu wetland, the largest natural wetland on the southern Yangtze River (China). Phylogenetic analyses showed that group A of M. oxyfera-like bacteria and pmoA genes occurred primarily at depths of 50-60 and 90-100 cm. Quantitative PCR further confirmed the presence of M. oxyfera-like bacteria in soil cores from different depths, with the highest abundance of 5.1 × 10(7) copies g(-1) dry soil at depth of 50-60 cm. Stable isotope experiments demonstrated that the n-damo process occurred primarily at depths of 50-60 and 90-100 cm, with the potential rates ranging from 0.2 to 14.5 nmol CO2 g(-1) dry soil d(-1). It was estimated that the methane flux may increase by approximately 2.7-4.3% in the examined wetland in the absence of n-damo. This study shows that the deep wetland soils (50-60 and 90-100 cm) are the preferred habitats for M. oxyfera-like bacteria. The study also highlights the potential importance of these bacteria in the methane and nitrogen cycles in deep wetland soils.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biota , Metano/metabolismo , Nitritos/metabolismo , Microbiologia do Solo , Anaerobiose , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , China , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Água Doce , Marcação por Isótopo , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Áreas Alagadas
12.
Curr Microbiol ; 70(4): 562-70, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25519694

RESUMO

Microbial mediated nitrite-dependent anaerobic methane oxidation (N-DAMO), which couples the oxidation of methane to nitrite reduction, is a recently discovered process. The discovery of N-DAMO process makes great contributions to complete the biogeochemical cycles of carbon and nitrogen, and to develop novel economic biotechnology for simultaneous carbon and nitrogen removal. This process is catalysed by the unique bacterium "Candidatus Methylomirabilis oxyfera" (M. oxyfera), which belongs to the candidate phylum NC10, a phylum having no members in pure culture. In recent years, some microbiological properties of M. oxyfera have been unravelled. The most prominent examples are the discoveries of the special ultrastructure (star-like) of the cell shape and the unique chemical composition (10MeC16:1Δ7) of M. oxyfera that have not been found in other bacteria yet. More importantly, a new intra-aerobic pathway was discovered in M. oxyfera. It seems that M. oxyfera produces oxygen intracellularly by the conversion of two nitric oxide molecules to dinitrogen gas and oxygen, and the produced oxygen is then used for methane oxidation and normal respiration. The current paper is a systematic review in the microbiological properties of M. oxyfera, especially for its special properties.


Assuntos
Bactérias/metabolismo , Metano/metabolismo , Nitritos/metabolismo , Anaerobiose , Bactérias/química , Bactérias/ultraestrutura , Carbono/metabolismo , Redes e Vias Metabólicas/genética , Óxido Nítrico/metabolismo , Nitrogênio/metabolismo , Oxirredução , Oxigênio/metabolismo
13.
Appl Environ Microbiol ; 80(24): 7611-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25261523

RESUMO

Anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) are two of the most recent discoveries in the microbial nitrogen cycle. In the present study, we provide direct evidence for the cooccurrence of the anammox and n-damo processes in a flooded paddy field in southeastern China. Stable isotope experiments showed that the potential anammox rates ranged from 5.6 to 22.7 nmol N2 g(-1) (dry weight) day(-1) and the potential n-damo rates varied from 0.2 to 2.1 nmol CO2 g(-1) (dry weight) day(-1) in different layers of soil cores. Quantitative PCR showed that the abundance of anammox bacteria ranged from 1.0 × 10(5) to 2.0 × 10(6) copies g(-1) (dry weight) in different layers of soil cores and the abundance of n-damo bacteria varied from 3.8 × 10(5) to 6.1 × 10(6) copies g(-1) (dry weight). Phylogenetic analyses of the recovered 16S rRNA gene sequences showed that anammox bacteria affiliated with "Candidatus Brocadia" and "Candidatus Kuenenia" and n-damo bacteria related to "Candidatus Methylomirabilis oxyfera" were present in the soil cores. It is estimated that a total loss of 50.7 g N m(-2) per year could be linked to the anammox process, which is at intermediate levels for the nitrogen flux ranges of aerobic ammonium oxidation and denitrification reported in wetland soils. In addition, it is estimated that a total of 0.14 g CH4 m(-2) per year could be oxidized via the n-damo process, while this rate is at the lower end of the aerobic methane oxidation rates reported in wetland soils.


Assuntos
Compostos de Amônio/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Metano/metabolismo , Nitritos/metabolismo , Microbiologia do Solo , Anaerobiose , Bactérias/classificação , Bactérias/genética , China , Inundações , Dados de Sequência Molecular , Oxirredução , Filogenia
14.
Appl Microbiol Biotechnol ; 98(18): 7983-91, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24880628

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-damo) is mediated by bacteria that anaerobically oxidize methane coupled with nitrite reduction and is a potential bioprocess for wastewater treatment. In this work, the effect of reactor configuration on n-damo bacterial cultivation was investigated. A magnetically stirred gas lift reactor (MSGLR), a sequencing batch reactor (SBR), and a continuously stirred tank reactor (CSTR) were selected to cultivate the bacteria. Microbial community was monitored by using quantitative PCR, 16S rRNA gene sequencing, pmoA gene sequencing, and fluorescence in situ hybridization (FISH). The effects of substrate inhibition, methane mass transfer, and biomass washout in the three reactors were focused on. The results indicated that the MSGLR had the best performance among the three reactor systems, with the highest total and specific n-damo activities. Its maximum volumetric nitrogen removal rate was up to 76.9 mg N L(-1) day(-1), which was higher than previously reported values (5.1-37.8 mg N L(-1) d(-1)).


Assuntos
Methylococcaceae/metabolismo , Nitritos/metabolismo , Anaerobiose , Reatores Biológicos/microbiologia , Hibridização in Situ Fluorescente , Methylococcaceae/genética , RNA Ribossômico 16S/genética
15.
Chemosphere ; 350: 141038, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147928

RESUMO

Wastewater containing selenium (Se) and soil contaminated by mercury (Hg) are two environmental problems, but they are rarely considered for synergistic treatment. In this work, anaerobic granular sludge (AnGS) was used to address both of the aforementioned issues simultaneously. The performance and mechanisms of Se(IV) removal from wastewater and Hg(II) immobilization in soil were investigated using various technologies. The results of the reactor operation indicated that the AnGS efficiently removed Se from wastewater, with a removal rate of 99.94 ± 0.05%. The microbial communities in the AnGS could rapidly reduce Se(IV) to Se0 nanoparticles (SeNPs). However, the AnGS lost the ability to reduce Se(IV) once the Se0 content reached the saturation value of 5.68 g Se/L. The excess sludge of Se0-rich AnGS was applied to remediate soil contaminated with Hg(II). The Se0-rich AnGS largely decreased the percentage of soil Hg in the mobile, extractable phase, with up to 99.1 ± 0.3% immobilization. Soil Hg(II) and Hg0 can react with Se (-II) and Se0, respectively, to form HgSe. The formation of inert HgSe was an important pathway for immobilizing Hg. Subsequently, the pot experiments indicated that soil remediation using Se0-rich AnGS significantly decreased the Hg content in pea plants. Especially, the content of Hg decreased from 555 ± 100 to 24 ± 3 µg/kg in roots after remediation. In summary, AnGS is an efficient and cost-effective material for synergistically treating Se-contaminated wastewater and Hg-contaminated soil.


Assuntos
Mercúrio , Selênio , Mercúrio/metabolismo , Selênio/metabolismo , Esgotos , Águas Residuárias , Anaerobiose , Solo
16.
Water Res ; 258: 121802, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38796914

RESUMO

Rice paddies are globally important sources of methane emissions and also active regions for methane consumption. However, the impact of fluctuating groundwater levels on methane cycling has received limited attention. In this study, we delved into the activity and microbial mechanisms underlying anaerobic oxidation of methane (AOM) in paddy fields. A comprehensive approach was employed, including 13C stable isotope assays, inhibition experiments, real-time quantitative reverse transcription PCR, metagenomic sequencing, and binning technology. Geochemical profiles revealed the abundant coexistence of both methane and electron acceptors in the groundwater table fluctuation (GTF) zone, at a depth of 40-60 cm. Notably, the GTF zone exhibited the highest rate of AOM, potentially linked to the reduction of iron oxides and nitrate. Within this zone, Candidatus Methanoperedens (belonging to the ANME-2d group) dominated the Archaea population, accounting for a remarkable 85.4 %. Furthermore, our results from inhibition experiments, RT-qPCR, and metagenome-assembled genome (MAG) analysis highlighted the active role of Ca. Methanoperedens GTF50 in the GTF zone. This microorganism could independently mediate AOM process through the intriguing "reverse methanogenesis" pathway. Considering the similarity in geochemical conditions across different paddy fields, it is likely that Ca. Methanoperedens-mediated AOM is prevalent in the GTF zones.


Assuntos
Água Subterrânea , Metano , Oryza , Oxirredução , Metano/metabolismo , Água Subterrânea/química , Água Subterrânea/microbiologia , Anaerobiose , Archaea/genética , Archaea/metabolismo
17.
Water Res ; 253: 121311, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367382

RESUMO

The antagonistic effects of mercury (Hg) and selenium (Se) have been extensively studied in higher animals and plants. In this study, the microbial antagonistic effects of Hg and Se were utilized for wastewater treatment. We developed and optimized a new granular sludge approach to efficiently remove Hg(II) and Se(IV) from wastewater. Under anaerobic-oxic-anaerobic (AOA) conditions, the removal rates of Hg(II) and Se(IV) reached up to 99.91±0.07 % and 97.7 ± 0.8 %, respectively. The wastewater Hg(II) was mostly (97.43±0.01 %) converted to an inert mineral called tiemannite (HgSe) in the sludge, and no methylmercury (MeHg) was detected. The HgSe in sludge is less toxic, with almost no risk of secondary release, and it can be recovered with high purity. An inhibition experiment of mercury reduction and the high expression of the mer operon indicated that most Hg(II) (∼71 %) was first reduced to Hg0, and then Hg0 reacted with Se0 to synthesize HgSe. Metagenomic results showed that the final sludge (day 182) was dominated by two unclassified bacteria in the orders Rhodospirillales (27.7 %) and Xanthomonadales (6.3 %). Their metagenome-assembled genomes (MAGs) were recovered, suggesting that both of them can reduce Hg(II) and Se(IV). Metatranscriptomic analyses indicate that they can independently and cooperatively synthesize HgSe. In summary, granular sludge under AOA conditions is an efficient method for removing and recovering Hg from wastewater. The microbial transformation of Hg2+to Hg0 to HgSe may occur widely in both engineering and natural ecosystems.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Selênio , Purificação da Água , Animais , Selênio/metabolismo , Esgotos/microbiologia , Águas Residuárias , Ecossistema , Purificação da Água/métodos
18.
Sci Total Environ ; 871: 162148, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758696

RESUMO

Toxic metal(loid)s are widespread and permanent in the biosphere, and bacteria have evolved a wide variety of metal(loid) resistance genes (MRGs) to resist the stress of excess metal(loid)s. Via active efflux, permeability barriers, extracellular/intracellular sequestration, enzymatic detoxification and reduction in metal(loid)s sensitivity of cellular targets, the key components of bacterial cells are protected from toxic metal(loid)s to maintain their normal physiological functions. Exploiting bacterial metal(loid) resistance mechanisms, MRGs have been applied in many environmental fields. Based on the specific binding ability of MRGs-encoded regulators to metal(loid)s, MRGs-dependent biosensors for monitoring environmental metal(loid)s are developed. MRGs-related biotechnologies have been applied to environmental remediation of metal(loid)s by using the metal(loid) tolerance, biotransformation, and biopassivation abilities of MRGs-carrying microorganisms. In this work, we review the historical evolution, resistance mechanisms, environmental variation, and environmental applications of bacterial MRGs. The potential hazards, unresolved problems, and future research directions are also discussed.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Metais/metabolismo , Bactérias/genética , Bactérias/metabolismo , Genes Bacterianos , Poluentes do Solo/análise
19.
Environ Pollut ; 338: 122563, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37717891

RESUMO

Extracellular superoxide radical (O2•-) is ubiquitous in microbial environments and has significant implications for pollutant transformation. Microbial extracellular O2•- can be produced through multiple pathways, including electron leakage from the respiratory electron transport chain (ETC), NADPH oxidation by the transmembrane NADPH oxidase (NOX), and extracellular reactions. Extracellular O2•- significantly influences the geochemical processes of various substances, including toxic metals and refractory organic pollutants. On one hand, extracellular O2•- can react with variable-valence metals and detoxify certain highly toxic metals, such as As(III), Cr(VI), and Hg(II). On the other hand, extracellular O2•- can directly or indirectly (via Bio-Fenton) degrade many organic pollutants, including a variety of emerging contaminants. In this work, we summarize the production mechanisms of microbial extracellular O2•-, review its roles in the transformation of environmental pollutants, and discuss the potential applications, limiting factors, and future research directions in this field.


Assuntos
Poluentes Ambientais , Superóxidos , NADPH Oxidases/metabolismo , Respiração Celular , Metais , Poluentes Ambientais/toxicidade , Oxirredução
20.
Chemosphere ; 317: 137901, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36669540

RESUMO

Iron-dependent anaerobic oxidation of methane (Fe-AOM) is an important process to reduce methane emissions into the atmosphere. It is well known that iron bioavailability largely influences microbial iron reduction, but the long-term effects of different ferric irons on soil Fe-AOM remain unknown. In this work, paddy soil in the ferruginous zone was collected and inoculated with insoluble ferrihydrite and soluble EDTA-Fe(III) for 420 days. Stable isotope experiments, activity inhibition tests, and molecular biological techniques were performed to reveal the activity, microbial community, and possible mechanism of paddy soil Fe-AOM. The results showed that ferrihydrite was a better electron acceptor for long-term Fe-AOM cultivation. Although EDTA-Fe(III) is highly bioavailable and could stimulate Fe-AOM activity for a short time, it restricted the activity increase in the long term. The abundances of archaea, iron-reducing bacteria (IRB), and gene mcrA largely increased after cultivation, indicating the important roles of mcrA-carrying archaea and IRB. Remarkably, archaeal communities were similar, but bacteria were totally different with different ferric irons. The results of the microbial community and activity inhibition suggested that Fe-AOM was performed likely by the cooperation between archaea (Methanomassiliicoccaceae or pGrfC26) and IRB in the cultures.


Assuntos
Compostos Férricos , Solo , Metano , Anaerobiose , Ácido Edético , Archaea/genética , Bactérias/genética , Oxirredução , Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA