Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Synchrotron Radiat ; 30(Pt 5): 923-933, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526993

RESUMO

The processing and analysis of synchrotron data can be a complex task, requiring specialized expertise and knowledge. Our previous work addressed the challenge of X-ray emission spectrum (XES) data processing by developing a standalone application using unsupervised machine learning. However, the task of analyzing the processed spectra remains another challenge. Although the non-resonant Kß XES of 3d transition metals are known to provide electronic structure information such as oxidation and spin state, finding appropriate parameters to match experimental data is a time-consuming and labor-intensive process. Here, a new XES data analysis method based on the genetic algorithm is demonstrated, applying it to Mn, Co and Ni oxides. This approach is also implemented as a standalone application, Argonne X-ray Emission Analysis 2 (AXEAP2), which finds a set of parameters that result in a high-quality fit of the experimental spectrum with minimal intervention. AXEAP2 is able to find a set of parameters that reproduce the experimental spectrum, and provide insights into the 3d electron spin state, 3d-3p electron exchange force and Kß emission core-hole lifetime.

2.
J Synchrotron Radiat ; 29(Pt 5): 1309-1317, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36073891

RESUMO

The Argonne X-ray Emission Analysis Package (AXEAP) has been developed to calibrate and process X-ray emission spectroscopy (XES) data collected with a two-dimensional (2D) position-sensitive detector. AXEAP is designed to convert a 2D XES image into an XES spectrum in real time using both calculations and unsupervised machine learning. AXEAP is capable of making this transformation at a rate similar to data collection, allowing real-time comparisons during data collection, reducing the amount of data stored from gigabyte-sized image files to kilobyte-sized text files. With a user-friendly interface, AXEAP includes data processing for non-resonant and resonant XES images from multiple edges and elements. AXEAP is written in MATLAB and can run on common operating systems, including Linux, Windows, and MacOS.


Assuntos
Análise de Dados , Aprendizado de Máquina não Supervisionado , Radiografia , Software , Raios X
3.
Nano Lett ; 21(19): 8324-8331, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34546060

RESUMO

Rare earth nickelates including LaNiO3 are promising catalysts for water electrolysis to produce oxygen gas. Recent studies report that Fe substitution for Ni can significantly enhance the oxygen evolution reaction (OER) activity of LaNiO3. However, the role of Fe in increasing the activity remains ambiguous, with potential origins that are both structural and electronic in nature. On the basis of a series of epitaxial LaNi1-xFexO3 thin films synthesized by molecular beam epitaxy, we report that Fe substitution tunes the Ni oxidation state in LaNi1-xFexO3 and a volcano-like OER trend is observed, with x = 0.375 being the most active. Spectroscopy and ab initio modeling reveal that high-valent Fe3+δ cationic species strongly increase the transition-metal (TM) 3d bandwidth via Ni-O-Fe bridges and enhance TM 3d-O 2p hybridization, boosting the OER activity. These studies deepen our understanding of structural and electronic contributions that give rise to enhanced OER activity in perovskite oxides.

4.
J Synchrotron Radiat ; 28(Pt 6): 1737-1746, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738927

RESUMO

In order to maintain a constant monochromatic synchrotron X-ray beam height for all energies, the separation between the crystals of a double-crystal monochromator is typically adjusted, via translation of the second crystal, while X-ray energy is varied, via rotation of the crystal pair. The ability to accurately translate the second crystal requires precise knowledge of the separation between the two crystals and, when present, crystal miscuts. Here, a simple method for calibrating the crystal gap from measured variation in the X-ray beam height that eliminates error in the fixed beam offset is provided.

5.
Environ Sci Technol ; 54(10): 6375-6384, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32298589

RESUMO

The incorporation of relatively minor impurity metals onto metal (oxy)hydroxides can strongly impact solubility. In complex highly alkaline multicomponent radioactive tank wastes such as those at the Hanford Nuclear Reservation, tests indicate that the surface area-normalized dissolution rate of boehmite (γ-AlOOH) nanomaterials is at least an order of magnitude lower than that predicted for the pure phase. Here, we examine the dissolution kinetics of boehmite coated by adsorbed Cr(III), which adheres at saturation coverages as sparse chemisorbed monolayer clusters. Using 40 nm boehmite nanoplates as a model system, temperature-dependent dissolution rates of pure versus Cr(III)-adsorbed boehmite showed that the initial rate for the latter is consistently several times lower, with an apparent activation energy 16 kJ·mol-1 higher. Although the surface coverage is only around 50%, solution analysis coupled to multimethod solids characterization reveal a phyicochemical armoring effect by adsorbed Cr(III) that substantially reduces the number of dissolution-active sites on particle surfaces. Such findings could help improve kinetics models of boehmite and/or metal ion adsorbed boehmite nanomaterials, ultimately providing a stronger foundation for the development of more robust complex radioactive liquid waste processing strategies.


Assuntos
Cáusticos , Nanopartículas , Adsorção , Hidróxido de Alumínio , Óxido de Alumínio , Solubilidade
6.
Environ Sci Technol ; 53(18): 11043-11055, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31442378

RESUMO

The development of advanced functional nanomaterials for selective adsorption in complex chemical environments requires partner studies of binding mechanisms. Motivated by observations of selective Cr(III) adsorption on boehmite nanoplates (γ-AlOOH) in highly caustic multicomponent solutions of nuclear tank waste, here we unravel the adsorption mechanism in molecular detail. We examined Cr(III) adsorption to synthetic boehmite nanoplates in sodium hydroxide solutions up to 3 M, using a combination of X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), scanning/transmission electron microscopy (S/TEM), electron energy loss spectroscopy (EELS), high-resolution atomic force microscopy (HR-AFM), time-of-fight secondary ion mass spectrometry (ToF-SIMS), Cr K-edge X-ray absorption near edge structure (XANES)/extended X-ray absorption fine structure (EXAFS), and electron paramagnetic resonance (EPR). Adsorption isotherms and kinetics were successfully fit to Langmuir and pseudo-second-order kinetic models, respectively, consistent with monotonic uptake of Cr(OH)4- monomers until saturation coverage of approximately half the aluminum surface site density. High resolution AFM revealed monolayer cluster self-assembly on the (010) basal surfaces with increasing Cr(III) loading, possessing a structural motif similar to guyanaite (ß-CrOOH), stabilized by corner-sharing Cr-O-Cr bonds and attached to the surface with edge-sharing Cr-O-Al bonds. The selective uptake appears related to short-range surface templating effects, with bridging metal connections likely enabled by hydroxyl anion ligand exchange reactions at the surface. Such a cluster formation mechanism, which stops short of more laterally extensive heteroepitaxy, could be a metal uptake discrimination mechanism more prevalent than currently recognized.


Assuntos
Hidróxido de Alumínio , Óxido de Alumínio , Adsorção , Cromo , Difração de Raios X
7.
Nano Lett ; 18(1): 336-346, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29240435

RESUMO

Room-temperature sodium-ion batteries have attracted increased attention for energy storage due to the natural abundance of sodium. However, it remains a huge challenge to develop versatile electrode materials with favorable properties, which requires smart structure design and good mechanistic understanding. Herein, we reported a general and scalable approach to synthesize three-dimensional (3D) titania-graphene hybrid via electrostatic-interaction-induced self-assembly. Synchrotron X-ray probe, transmission electron microscopy, and computational modeling revealed that the strong interaction between titania and graphene through comparably strong van der Waals forces not only facilitates bulk Na+ intercalation but also enhances the interfacial sodium storage. As a result, the titania-graphene hybrid exhibits exceptional long-term cycle stability up to 5000 cycles, and ultrahigh rate capability up to 20 C for sodium storage. Furthermore, density function theory calculation indicated that the interfacial Li+, K+, Mg2+, and Al3+ storage can be enhanced as well. The proposed general strategy opens up new avenues to create versatile materials for advanced battery systems.

8.
J Synchrotron Radiat ; 25(Pt 5): 1514-1516, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179192

RESUMO

For many X-ray microprobe experiments it is desirable to be able to vary the beam size: using large beams for survey scans and a small beam for the final measurements. Beryllium refractive lenses were found to be a simple and controllable method for enlarging the focus in a Kirkpatrick-Baez-based microprobe. They can provide variable spot size, can be quickly inserted or removed and do not move the beam center on the sample.

9.
Inorg Chem ; 57(6): 2973-2976, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29498846

RESUMO

The crystal chemistry and magnetic properties of two hexagonal nickel(IV)-containing perovskites, Ba4Ni1.94Ir2.06O12 and BaNiO3, are reported. The 12R perovskite, Ba4Ni1.94Ir2.06O12, possesses an unexpected coexistence of nickel(II) and nickel(IV). This quadruple perovskite structure contains Ir2NiO12 mixed-metal-cation units in which direct metal-metal bonding between nickel(IV) and iridium(V) is inferred. X-ray absorption near-edge spectroscopy and X-ray photoelectron spectroscopy measurements were conducted to confirm the simultaneous presence of nickel(II) and nickel(IV).

10.
Inorg Chem ; 57(12): 7362-7371, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29812925

RESUMO

The crystal chemistry and magnetic properties for two triple perovskites, Ba3Fe1.56Ir1.44O9 and Ba3NiIr2O9, grown as large, highly faceted single crystals from a molten strontium carbonate flux, are reported. Unlike the idealized A3MM2'O9 hexagonal symmetry characteristic of most triple perovskites, including Ba3NiIr2O9, Ba3Fe1.56Ir1.44O9 possesses significant site-disorder, resulting in a noncentrosymmetric polar structure with trigonal symmetry. The valence of iron and iridium in the heavily distorted Fe/Ir sites was determined to be Fe(III) and Ir(V) by X-ray absorption near edge spectroscopy (XANES). Density functional theory calculations were conducted to understand the effect of the trigonal distortion on the local Fe(III)O6 electronic structure, and the spin state of iron was determined to be S = 5/2 by Mössbauer spectroscopy. Conductivity measurements indicate thermally activated semiconducting behavior in the trigonal perovskite. Magnetic properties were measured and near room temperature magnetic ordering (TN = 270 K) was observed for Ba3Fe1.56Ir1.44O9.

11.
Nano Lett ; 17(2): 953-962, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28072542

RESUMO

Sodium-ion batteries (SIBs) have been considered as one of the promising power source candidates for the stationary storage industries owing to the much lower cost of sodium than lithium. It is well-known that the electrode materials largely determine the energy density of the battery systems. However, recent discoveries on the electrode materials showed that most of them present distinct lithium and sodium storage performance, which is not yet well understood. In this work, we performed a comparative understanding on the structural changes of porous cobalt oxide during its electrochemical lithiation and sodiation process by in operando synchrotron small angel X-ray scattering, X-ray diffraction, and X-ray absorption spectroscopy. It was found that compared to the lithiation process, the porous cobalt oxide undergoes less pore structure changes, oxidation state, and local structure changes as well as crystal structure evolution during its sodiation process, which is attributed to the intrinsic low sodiation activity of cobalt oxide as evidenced by ab initio molecular dynamics simulations. Moreover, it was indicated that the sodiation activity of metal sulfides is higher than that of metal oxides, indicating a better candidate for SIBs. Such understanding is crucial for future design and improvement of high-performance electrode materials for SIBs.

12.
Nano Lett ; 16(4): 2663-73, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27022761

RESUMO

In contrast to the stable cycle performance of space confined Se-based cathodes for lithium batteries in carbonate-based electrolytes, their common capacity fading in ether-based electrolytes has been paid less attention and not yet well-addressed so far. In this work, the lithiation/delithiation of amorphous Se2S5 confined in micro/mesoporous carbon (Se2S5/MPC) cathode was investigated by in situ X-ray near edge absorption spectroscopy (XANES) and theoretical calculations. The Se2S5/MPC composite was synthesized by a modified vaporization-condensation method to ensure a good encapsulation of Se2S5 into the pores of MPC host. In situ XANES results illustrated that the lithiation/delithiation reversibility of Se component was gradually decreased in ether-based electrolytes, leading to an aggravated formation of long-chain polyselenides during cycling and further capacity decay. Moreover, ab initio calculations revealed that the binding energy of polyselenides (Li2Sen) with carbon host is in an order of Li2Se6 > Li2Se4 > Li2Se. The insights into the failure mechanism of Se-based cathode gain in this work are expected to serve as a guide for future design on high performance Se-based cathodes.

13.
Inorg Chem ; 55(11): 5649-54, 2016 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-27187072

RESUMO

The hexagonal perovskites Ba3BiIr2O9, Ba3BiRu2O9, and Ba4BiIr3O12 all undergo pressure-induced 1% volume collapses above 5 GPa. These first-order transitions have been ascribed to internal transfer of valence electrons between bismuth and iridium/ruthenium, which is driven by external applied pressure because the reduction in volume achieved by emptying the 6s shell of bismuth upon oxidation to Bi(5+) is greater in magnitude than the increase in volume by reducing iridium or ruthenium. Here, we report direct observation of these valence transfers for the first time, using high-pressure X-ray absorption near-edge spectroscopy (XANES) measurements. Our data also support the highly unusual "4+" nominal oxidation state of bismuth in these compounds, although the possibility of local disproportionation into Bi(3+)/Bi(5+) cannot be definitively ruled out. Ab initio calculations reproduce the transition, support its interpretation as a valence electron transfer from Bi to Ir/Ru, and suggest that the high-pressure phase may show metallic behavior (in contrast to the insulating ambient-pressure phase).

14.
J Synchrotron Radiat ; 22(2): 436-45, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25723945

RESUMO

The issue of detecting the XAFS signal from dilute samples is discussed in detail with the aim of making best use of high flux beamlines that provide up to 10(13) photons s(-1). Various detection methods are compared, including filters with slits, solid state detectors, crystal analyzers and combinations of these. These comparisons rely on simulations that use experimentally determined parameters. It is found that inelastic scattering places a fundamental limit on detection, and that it is important to take proper account of the polarization dependence of the signals. The combination of a filter-slit system with a solid state detector is a promising approach. With an optimized system good performance can be obtained even if the total count rate is limited to 10(7) Hz. Detection schemes with better energy resolution can help at the largest dilutions if their collection efficiency and count rate limits can be improved.

15.
Environ Sci Technol ; 49(4): 2255-61, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25607235

RESUMO

Maternal transfer of elevated selenium (Se) to offspring is an important route of Se exposure for fish in the natural environment. However, there is a lack of information on the tissue specific spatial distribution and speciation of Se in the early developmental stages of fish, which provide important information about Se toxicokinetics. The effect of maternal transfer of Se was studied by feeding adult zebrafish a Se-elevated or a control diet followed by collection of larvae from both groups. Novel confocal synchrotron-based techniques were used to investigate Se within intact preserved larvae. Confocal X-ray fluorescence imaging was used to compare Se distributions within specific planes of an intact larva from each of the two groups. The elevated Se treatment showed substantially higher Se levels than the control; Se preferentially accumulated to highest levels in the eye lens, with lower levels in the retina, yolk and other tissues. Confocal X-ray absorption spectroscopy was used to determine that the speciation of Se within the eye lens of the intact larva was a selenomethionine-like species. Preferential accumulation of Se in the eye lens may suggest a direct cause-and-effect relationship between exposure to elevated Se and Se-induced ocular impairments reported previously. This study illustrates the effectiveness of confocal X-ray fluorescence methods for investigating trace element distribution and speciation in intact biological specimens.


Assuntos
Cristalino/metabolismo , Selênio/farmacocinética , Poluentes Químicos da Água/farmacocinética , Animais , Feminino , Larva , Exposição Materna , Imagem Óptica , Espectroscopia por Absorção de Raios X , Peixe-Zebra
16.
Phys Rev Lett ; 112(5): 056401, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24580615

RESUMO

Vanadium sesquioxide, V2O3, is a prototypical metal-to-insulator system where, in temperature-dependent studies, the transition always coincides with a corundum-to-monoclinic structural transition. As a function of pressure, V2O3 follows the expected behavior of increased metallicity due to a larger bandwidth for pressures up to 12.5 GPa. Surprisingly, for higher pressures when the structure becomes unstable, the resistance starts to increase. Around 32.5 GPa at 300 K, we observe a novel pressure-induced corundum-to-monoclinic transition between two metallic phases, showing that the structural phase transition can be decoupled from the metal-insulator transition. Using x-ray Raman scattering, we find that screening effects, which are strong in the corundum phase, become weakened at high pressures. Theoretical calculations indicate that this can be related to a decrease in coherent quasiparticle strength, suggesting that the high-pressure phase is likely a critical correlated metal, on the verge of Mott-insulating behavior.

17.
Phys Chem Chem Phys ; 16(7): 3254-60, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24407021

RESUMO

Evolving factor analysis (EFA) of X-ray absorption near-edge spectroscopy (XANES) data is shown to be a useful tool to understand the phase relationships and compositional ranges of stability in the LiVPO4F-VPO4F system. EFA was used to calculate the concentration of phases versus state-of-charge in a lithium-ion battery and true XANES spectra. The results of EFA showed that, indeed, three phases were present during cycling of a LiVPO4F∥Li cell: LiVPO4F, LixVPO4F, and VPO4F. In contrast to what was reported by others, the second phase was not a fixed composition with x = 0.67, but, instead, existed over a range of lithium stoichiometry, x = 0.25 to 0.80. EFA results also showed that the reactions leading to these phases are reversible.

18.
J Am Chem Soc ; 135(21): 8047-56, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23631402

RESUMO

Electrical energy storage for transportation has gone beyond the limit of converntional lithium ion batteries currently. New material or new battery system development is an alternative approach to achieve the goal of new high-energy storage system with energy densities 5 times or more greater. A series of SeSx-carbon (x = 0-7) composite materials has been prepared and evaluated as the positive electrodes in secondary lithium cells with ether-based electrolyte. In situ synchrotron high-energy X-ray diffraction was utilized to investigate the crystalline phase transition during cell cycling. Complementary, in situ Se K-edge X-ray absorption near edge structure analysis was used to track the evolution of the Se valence state for both crystalline and noncrystalline phases, including amorphous and electrolyte-dissolved phases in the (de)lithiation process. On the basis of these results, a mechanism for the (de)lithiation process is proposed, where Se is reduced to the polyselenides, Li2Sen (n ≥ 4), Li2Se2, and Li2Se sequentially during the lithiation and Li2Se is oxidized to Se through Li2Sen (n ≥ 4) during the delithiation. In addition, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy demonstrated the reversibility of the Li/Se system in ether-based electrolyte and the presence of side products in the carbonate-based electrolytes. For Li/SeS2 and Li/SeS7 cells, Li2Se and Li2S are the discharged products with the presence of Se only as the crystalline phase in the end of charge.

19.
Environ Sci Technol ; 46(15): 7992-8000, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22731932

RESUMO

Etched silicon microfluidic pore network models (micromodels) with controlled chemical and redox gradients, mineralogy, and microbiology under continuous flow conditions are used for the incremental development of complex microenvironments that simulate subsurface conditions. We demonstrate the colonization of micromodel pore spaces by an anaerobic Fe(III)-reducing bacterial species (Geobacter sulfurreducens) and the enzymatic reduction of a bioavailable Fe(III) phase within this environment. Using both X-ray microprobe and X-ray absorption spectroscopy, we investigate the combined effects of the precipitated Fe(III) phases and the microbial population on uranium biogeochemistry under flow conditions. Precipitated Fe(III) phases within the micromodel were most effectively reduced in the presence of an electron shuttle (AQDS), and Fe(II) ions adsorbed onto the precipitated mineral surface without inducing any structural change. In the absence of Fe(III), U(VI) was effectively reduced by the microbial population to insoluble U(IV), which was precipitated in discrete regions associated with biomass. In the presence of Fe(III) phases, however, both U(IV) and U(VI) could be detected associated with biomass, suggesting reoxidation of U(IV) by localized Fe(III) phases. These results demonstrate the importance of the spatial localization of biomass and redox active metals, and illustrate the key effects of pore-scale processes on contaminant fate and reactive transport.


Assuntos
Geobacter/metabolismo , Ferro/classificação , Urânio/classificação , Anaerobiose , Biomassa , Geobacter/crescimento & desenvolvimento , Ferro/metabolismo , Microfluídica , Oxirredução , Urânio/metabolismo , Espectroscopia por Absorção de Raios X
20.
Environ Sci Technol ; 46(4): 2132-40, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22276620

RESUMO

This study measured reductive solubilization of plutonium(IV) hydrous oxide (Pu(IV)O(2)·xH(2)O((am))) with hydrogen (H(2)) as electron donor, in the presence or absence of dissimilatory metal-reducing bacteria (DMRB), anthraquinone-2,6-disulfonate (AQDS), and ethylenediaminetetraacetate (EDTA). In PIPES buffer at pH 7 with excess H(2), Shewanella oneidensis and Geobacter sulfurreducens both solubilized <0.001% of 0.5 mM Pu(IV)O(2)·xH(2)O((am)) over 8 days, with or without AQDS. However, Pu((aq)) increased by an order of magnitude in some treatments, and increases in solubility were associated with production of Pu(III)((aq)). The solid phase of these treatments contained Pu(III)(OH)(3(am)), with more in the DMRB treatments compared with abiotic controls. In the presence of EDTA and AQDS, PuO(2)·xH(2)O((am)) was completely solubilized by S. oneidensis and G. sulfurreducens in ∼24 h. Without AQDS, bioreductive solubilization was slower (∼22 days) and less extensive (∼83-94%). In the absence of DMRB, EDTA facilitated reductive solubilization of 89% (without AQDS) to 98% (with AQDS) of the added PuO(2)·xH(2)O((am)) over 418 days. An in vitro assay demonstrated electron transfer to PuO(2)·xH(2)O((am)) from the S. oneidensis outer-membrane c-type cytochrome MtrC. Our results (1) suggest that PuO(2)·xH(2)O((am)) reductive solubilization may be important in reducing environments, especially in the presence of complexing ligands and electron shuttles, (2) highlight the environmental importance of polynuclear, colloidal Pu, (3) provide additional evidence that Pu(III)-EDTA is a more likely mobile form of Pu than Pu(IV)-EDTA, and (4) provide another example of outer-membrane cytochromes and electron-shuttling compounds facilitating bioreduction of insoluble electron acceptors in geologic environments.


Assuntos
Geobacter/metabolismo , Plutônio/metabolismo , Poluentes Radioativos/metabolismo , Shewanella/metabolismo , Antraquinonas/química , Quelantes/química , Ácido Edético/química , Geobacter/ultraestrutura , Microscopia Eletrônica de Transmissão , Oxirredução , Plutônio/química , Poluentes Radioativos/química , Shewanella/ultraestrutura , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA