Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Org Biomol Chem ; 12(44): 8952-65, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25277547

RESUMO

A structure-based design campaign for non-covalent small molecule inhibitors of human granzyme B was carried out by means of a virtual screening strategy employing three constraints and probe site-mapping with FTMAP to identify ligand "hot spots". In addition, new scaffolds of diverse structures were subsequently explored with ROCS shape-based superposition methods, following by Glide SP docking, induced fit docking and analysis of QikProp molecular properties. Novel classes of moderately active small molecule blockers (≥25 µM IC50 values) from commercially available libraries were identified, and three novel scaffolds have been synthesized by multi-step procedures. Furthermore, we provide an example of a comprehensive structure-based drug discovery approach to non-covalent inhibitors that relies on the X-ray structure of a covalently bound ligand and suggest that the design path may be compromised by alternative and unknown binding poses.


Assuntos
Desenho de Fármacos , Granzimas/antagonistas & inibidores , Inibidores de Serina Proteinase/farmacologia , Algoritmos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Granzimas/metabolismo , Humanos , Modelos Moleculares , Conformação Molecular , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Relação Estrutura-Atividade
2.
J Immunol ; 188(8): 3920-7, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22407915

RESUMO

The homeostasis of the immune system is tightly controlled by both cell-extrinsic and -intrinsic mechanisms. These regulators, not all known to date, drive cells in and out of quiescence when and where required to allow the immune system to function. In this article, we describe a deficiency in deoxycytidine kinase (DCK), one of the major enzymes of the nucleoside salvage pathway, which affects peripheral T cell homeostatic proliferation and survival. As a result of an N-ethyl-N-nitrosourea-induced mutation in the last α helix of DCK, a functionally null protein has been generated in the mouse and affects the composition of the hematopoietic system. Both B and T lymphocyte development is impaired, leading to a state of chronic lymphopenia and to a significant increase in the number of myeloid cells and erythrocytes. In the periphery, we found that mutant lymphocytes adopt a CD44(high)CD62L(low) memory phenotype, with high levels of proliferation and apoptosis. These phenotypes are notably the result of a cell-extrinsic-driven lymphopenia-induced proliferation as wild-type cells transferred into DCK-deficient recipients adopt the same profile. In addition, DCK also regulates lymphocyte quiescence in a cell-intrinsic manner. These data establish dCK as a new regulator of hematopoietic integrity and lymphocyte quiescence and survival.


Assuntos
Desoxicitidina Quinase/imunologia , Nucleosídeos/imunologia , Linfócitos T/imunologia , Animais , Antígenos CD/imunologia , Apoptose , Linfócitos B/imunologia , Linfócitos B/metabolismo , Proliferação de Células , Sobrevivência Celular , Desoxicitidina Quinase/genética , Eritrócitos/imunologia , Eritrócitos/metabolismo , Etilnitrosoureia/toxicidade , Inativação Gênica , Imunidade Inata , Memória Imunológica , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica , Linfopenia/genética , Linfopenia/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Células Mieloides/imunologia , Células Mieloides/metabolismo , Nucleosídeos/genética , Nucleosídeos/metabolismo , Análise de Sequência de DNA , Linfócitos T/metabolismo
3.
Biochem Mol Biol Educ ; 38(6): 393-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21567868

RESUMO

RNA mediated gene interference (RNAi) is now a key tool in eukaryotic cell and molecular biology research. This article describes a five session laboratory practical, spread over a seven day period, to introduce and illustrate the technique. During the exercise, students working in small groups purify PCR products that encode in vitro transcription promoters fused to sequences from Drosophila genes of the Rho/Rac GTPase family. These DNA templates are then used to synthesize double stranded RNAs (dsRNA), which are subsequently used to transfect Drosophila Kc embryonic cells. The resulting RNAi produces simple cellular phenotypes that are observed following fluorescent histochemical staining. These phenotypes are ultimately related to gene ontology data that the students generate through a bioinformatic analysis of the sequences transcribed into dsRNA. Taken together, this laboratory exercise provides "hands on" experience of RNAi in a class setting and provides a framework for the in-depth discussion of how this technique can be applied to studies of gene function.

4.
J Med Chem ; 53(24): 8508-22, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21080703

RESUMO

Cyclin-dependent protein kinases (CDKs) are central to the appropriate regulation of cell proliferation, apoptosis, and gene expression. Abnormalities in CDK activity and regulation are common features of cancer, making CDK family members attractive targets for the development of anticancer drugs. Here, we report the identification of a pyrazolo[1,5-a]pyrimidine derived compound, 4k (BS-194), as a selective and potent CDK inhibitor, which inhibits CDK2, CDK1, CDK5, CDK7, and CDK9 (IC50= 3, 30, 30, 250, and 90 nmol/L, respectively). Cell-based studies showed inhibition of the phosphorylation of CDK substrates, Rb and the RNA polymerase II C-terminal domain, down-regulation of cyclins A, E, and D1, and cell cycle block in the S and G2/M phases. Consistent with these findings, 4k demonstrated potent antiproliferative activity in 60 cancer cell lines tested (mean GI50= 280 nmol/L). Pharmacokinetic studies showed that 4k is orally bioavailable, with an elimination half-life of 178 min following oral dosing in mice. When administered at a concentration of 25 mg/kg orally, 4k inhibited human tumor xenografts and suppressed CDK substrate phosphorylation. These findings identify 4k as a novel, potent CDK selective inhibitor with potential for oral delivery in cancer patients.


Assuntos
Antineoplásicos/síntese química , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Pirazóis/síntese química , Pirimidinas/síntese química , Administração Oral , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Disponibilidade Biológica , Proteínas Sanguíneas/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Feminino , Humanos , Técnicas In Vitro , Camundongos , Camundongos Nus , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Fosforilação , Ligação Proteica , Pirazóis/química , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancer Res ; 69(15): 6208-15, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19638587

RESUMO

Normal progression through the cell cycle requires the sequential action of cyclin-dependent kinases CDK1, CDK2, CDK4, and CDK6. Direct or indirect deregulation of CDK activity is a feature of almost all cancers and has led to the development of CDK inhibitors as anticancer agents. The CDK-activating kinase (CAK) plays a critical role in regulating cell cycle by mediating the activating phosphorylation of CDK1, CDK2, CDK4, and CDK6. As such, CDK7, which also regulates transcription as part of the TFIIH basal transcription factor, is an attractive target for the development of anticancer drugs. Computer modeling of the CDK7 structure was used to design potential potent CDK7 inhibitors. Here, we show that a pyrazolo[1,5-a]pyrimidine-derived compound, BS-181, inhibited CAK activity with an IC(50) of 21 nmol/L. Testing of other CDKs as well as another 69 kinases showed that BS-181 only inhibited CDK2 at concentrations lower than 1 micromol/L, with CDK2 being inhibited 35-fold less potently (IC(50) 880 nmol/L) than CDK7. In MCF-7 cells, BS-181 inhibited the phosphorylation of CDK7 substrates, promoted cell cycle arrest and apoptosis to inhibit the growth of cancer cell lines, and showed antitumor effects in vivo. The drug was stable in vivo with a plasma elimination half-life in mice of 405 minutes after i.p. administration of 10 mg/kg. The same dose of drug inhibited the growth of MCF-7 human xenografts in nude mice. BS-181 therefore provides the first example of a potent and selective CDK7 inhibitor with potential as an anticancer agent.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Quinases Ciclina-Dependentes/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Animais , Neoplasias da Mama/enzimologia , Ciclo Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Desenho Assistido por Computador , Desenho de Fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Moleculares , Inibidores de Proteínas Quinases/síntese química , Pirazóis/síntese química , Pirimidinas/síntese química , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase Ativadora de Quinase Dependente de Ciclina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA