Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663092

RESUMO

The cerebellum has a well-established role in controlling motor functions, including coordination, posture, and the learning of skilled movements. The mechanisms for how it carries out motor behavior remain under intense investigation. Interestingly though, in recent years the mechanisms of cerebellar function have faced additional scrutiny since nonmotor behaviors may also be controlled by the cerebellum. With such complexity arising, there is now a pressing need to better understand how cerebellar structure, function, and behavior intersect to influence behaviors that are dynamically called upon as an animal experiences its environment. Here, we discuss recent experimental work that frames possible neural mechanisms for how the cerebellum shapes disparate behaviors and why its dysfunction is catastrophic in hereditary and acquired conditions-both motor and nonmotor. For these reasons, the cerebellum might be the ideal therapeutic target.

2.
Nat Rev Neurosci ; 20(5): 298-313, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30923348

RESUMO

The human cerebellum has a protracted developmental timeline compared with the neocortex, expanding the window of vulnerability to neurological disorders. As the cerebellum is critical for motor behaviour, it is not surprising that most neurodevelopmental disorders share motor deficits as a common sequela. However, evidence gathered since the late 1980s suggests that the cerebellum is involved in motor and non-motor function, including cognition and emotion. More recently, evidence indicates that major neurodevelopmental disorders such as intellectual disability, autism spectrum disorder, attention-deficit hyperactivity disorder and Down syndrome have potential links to abnormal cerebellar development. Out of recent findings from clinical and preclinical studies, the concept of the 'cerebellar connectome' has emerged that can be used as a framework to link the role of cerebellar development to human behaviour, disease states and the design of better therapeutic strategies.


Assuntos
Cerebelo/crescimento & desenvolvimento , Cerebelo/fisiopatologia , Conectoma , Rede Nervosa/fisiopatologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Animais , Humanos
3.
Pflugers Arch ; 475(1): 5-11, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35904636

RESUMO

It is common to distinguish between "holist" and "reductionist" views of brain function, where the former envisions the brain as functioning as an indivisible unit and the latter as a collection of distinct units that serve different functions. Opposing reductionism, a number of researchers have pointed out that cortical network architecture does not respect functional boundaries, and the neuroanatomist V. Braitenberg proposed to understand the cerebral cortex as a "great mixing machine" of neuronal activity from sensory inputs, motor commands, and intrinsically generated processes. In this paper, we offer a contextualization of Braitenberg's point, and we review evidence for the interactions of neuronal activity from multiple sensory inputs and intrinsic neuronal processes in the cerebral cortex. We focus on new insights from studies on audiovisual interactions and on the influence of respiration on brain functions, which do not seem to align well with "reductionist" views of areal functional boundaries. Instead, they indicate that functional boundaries are fuzzy and context dependent. In addition, we discuss the relevance of the influence of sensory, proprioceptive, and interoceptive signals on cortical activity for understanding brain-body interactions, highlight some of the consequences of these new insights for debates on embodied cognition, and offer some suggestions for future studies.


Assuntos
Encéfalo , Córtex Cerebral , Córtex Cerebral/fisiologia , Respiração , Neurônios/fisiologia
4.
Cerebellum ; 21(5): 762-775, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35218525

RESUMO

Spatial working memory (SWM) is a cerebrocerebellar cognitive skill supporting survival-relevant behaviors, such as optimizing foraging behavior by remembering recent routes and visited sites. It is known that SWM decision-making in rodents requires the medial prefrontal cortex (mPFC) and dorsal hippocampus. The decision process in SWM tasks carries a specific electrophysiological signature of a brief, decision-related increase in neuronal communication in the form of an increase in the coherence of neuronal theta oscillations (4-12 Hz) between the mPFC and dorsal hippocampus, a finding we replicated here during spontaneous exploration of a plus maze in freely moving mice. We further evaluated SWM decision-related coherence changes within frequency bands above theta. Decision-related coherence increases occurred in seven frequency bands between 4 and 200 Hz and decision-outcome-related differences in coherence modulation occurred within the beta and gamma frequency bands and in higher frequency oscillations up to 130 Hz. With recent evidence that Purkinje cells in the cerebellar lobulus simplex (LS) represent information about the phase and phase differences of gamma oscillations in the mPFC and dorsal hippocampus, we hypothesized that LS might be involved in the modulation of mPFC-hippocampal gamma coherence. We show that optical stimulation of LS significantly impairs SWM performance and decision-related mPFC-dCA1 coherence modulation, providing causal evidence for an involvement of cerebellar LS in SWM decision-making at the behavioral and neuronal level. Our findings suggest that the cerebellum might contribute to SWM decision-making by optimizing the decision-related modulation of mPFC-dCA1 coherence.


Assuntos
Memória de Curto Prazo , Memória Espacial , Animais , Córtex Cerebelar , Hipocampo , Memória de Curto Prazo/fisiologia , Camundongos , Córtex Pré-Frontal/fisiologia , Memória Espacial/fisiologia
5.
J Neurophysiol ; 122(2): 563-571, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31215344

RESUMO

The mammalian olfactory bulb displays a prominent respiratory rhythm, which is linked to the sniff cycle and is driven by sensory input from olfactory receptors in the nasal sensory epithelium. In rats and mice, respiratory frequencies occupy the same band as the hippocampal θ-rhythm, which has been shown to be a key player in memory processes. Hippocampal and olfactory bulb rhythms were previously found to be uncorrelated except in specific odor-contingency learning circumstances. However, many recent electrophysiological studies in both rodents and humans reveal a surprising cycle-by-cycle influence of nasal respiration on neuronal activity throughout much of the cerebral cortex beyond the olfactory system, including the prefrontal cortex, hippocampus, and subcortical structures. In addition, respiratory phase has been shown to influence higher-frequency oscillations associated with cognitive functions, including attention and memory, such as the power of γ-rhythms and the timing of hippocampal sharp wave ripples. These new findings support respiration's role in cognitive function, which is supported by studies in human subjects, in which nasal respiration has been linked to memory processes. Here, we review recent reports from human and rodent experiments that link respiration to the modulation of memory function and the neurophysiological processes involved in memory in rodents and humans. We argue that respiratory influence on the neuronal activity of two key memory structures, the hippocampus and prefrontal cortex, provides a potential neuronal mechanism behind respiratory modulation of memory.


Assuntos
Ondas Encefálicas/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Córtex Pré-Frontal/fisiologia , Respiração , Animais , Humanos
6.
Cerebellum ; 18(6): 1064-1097, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31165428

RESUMO

The cerebellum is best known for its role in controlling motor behaviors. However, recent work supports the view that it also influences non-motor behaviors. The contribution of the cerebellum towards different brain functions is underscored by its involvement in a diverse and increasing number of neurological and neuropsychiatric conditions including ataxia, dystonia, essential tremor, Parkinson's disease (PD), epilepsy, stroke, multiple sclerosis, autism spectrum disorders, dyslexia, attention deficit hyperactivity disorder (ADHD), and schizophrenia. Although there are no cures for these conditions, cerebellar stimulation is quickly gaining attention for symptomatic alleviation, as cerebellar circuitry has arisen as a promising target for invasive and non-invasive neuromodulation. This consensus paper brings together experts from the fields of neurophysiology, neurology, and neurosurgery to discuss recent efforts in using the cerebellum as a therapeutic intervention. We report on the most advanced techniques for manipulating cerebellar circuits in humans and animal models and define key hurdles and questions for moving forward.


Assuntos
Cerebelo/fisiologia , Consenso , Estimulação Encefálica Profunda/métodos , Modelos Animais , Animais , Cerebelo/citologia , Estimulação Encefálica Profunda/tendências , Humanos
7.
PLoS Comput Biol ; 13(6): e1005578, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28617798

RESUMO

Neural coding through inhibitory projection pathways remains poorly understood. We analyze the transmission properties of the Purkinje cell (PC) to cerebellar nucleus (CN) pathway in a modeling study using a data set recorded in awake mice containing respiratory rate modulation. We find that inhibitory transmission from tonically active PCs can transmit a behavioral rate code with high fidelity. We parameterized the required population code in PC activity and determined that 20% of PC inputs to a full compartmental CN neuron model need to be rate-comodulated for transmission of a rate code. Rate covariance in PC inputs also accounts for the high coefficient of variation in CN spike trains, while the balance between excitation and inhibition determines spike rate and local spike train variability. Overall, our modeling study can fully account for observed spike train properties of cerebellar output in awake mice, and strongly supports rate coding in the cerebellum.


Assuntos
Potenciais de Ação/fisiologia , Núcleos Cerebelares/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Células de Purkinje/fisiologia , Animais , Simulação por Computador , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Vigília/fisiologia
8.
Cerebellum ; 16(1): 230-252, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27193702

RESUMO

For many decades, the predominant view in the cerebellar field has been that the olivocerebellar system's primary function is to induce plasticity in the cerebellar cortex, specifically, at the parallel fiber-Purkinje cell synapse. However, it has also long been proposed that the olivocerebellar system participates directly in motor control by helping to shape ongoing motor commands being issued by the cerebellum. Evidence consistent with both hypotheses exists; however, they are often investigated as mutually exclusive alternatives. In contrast, here, we take the perspective that the olivocerebellar system can contribute to both the motor learning and motor control functions of the cerebellum and might also play a role in development. We then consider the potential problems and benefits of it having multiple functions. Moreover, we discuss how its distinctive characteristics (e.g., low firing rates, synchronization, and variable complex spike waveforms) make it more or less suitable for one or the other of these functions, and why having multiple functions makes sense from an evolutionary perspective. We did not attempt to reach a consensus on the specific role(s) the olivocerebellar system plays in different types of movements, as that will ultimately be determined experimentally; however, collectively, the various contributions highlight the flexibility of the olivocerebellar system, and thereby suggest that it has the potential to act in both the motor learning and motor control functions of the cerebellum.


Assuntos
Cerebelo/fisiologia , Aprendizagem/fisiologia , Atividade Motora/fisiologia , Núcleo Olivar/fisiologia , Animais , Consenso , Humanos , Vias Neurais/fisiologia
9.
Conscious Cogn ; 56: 77-90, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29073509

RESUMO

In spite of its importance as a life-defining rhythmic movement and its constant rhythmic contraction and relaxation of the body, respiration has not received attention in Embodied Cognition (EC) literature. Our paper aims to show that (1) respiration exerts significant and unexpected influence on cognitive processes, and (2) it does so by modulating neural synchronization that underlies specific cognitive processes. Then, (3) we suggest that the particular example of respiration may function as a model for a general mechanism through which the body influences cognitive functioning. Finally, (4) we work out the implications for EC, draw a parallel to the role of gesture, and argue that respiration sometimes plays a double, pragmatic and epistemic, role, which reduces the cognitive load. In such cases, consistent with EC, the overall cognitive activity includes a loop-like interaction between neural and non-neural elements.


Assuntos
Potenciais de Ação/fisiologia , Ondas Encefálicas/fisiologia , Cognição/fisiologia , Excitabilidade Cortical/fisiologia , Respiração , Animais , Humanos
10.
J Neurosci ; 34(24): 8231-45, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24920627

RESUMO

Cerebellar circuits are patterned into an array of topographic parasagittal domains called zones. The proper connectivity of zones is critical for motor coordination and motor learning, and in several neurological diseases cerebellar circuits degenerate in zonal patterns. Despite recent advances in understanding zone function, we still have a limited understanding of how zones are formed. Here, we focused our attention on Purkinje cells to gain a better understanding of their specific role in establishing zonal circuits. We used conditional mouse genetics to test the hypothesis that Purkinje cell neurotransmission is essential for refining prefunctional developmental zones into sharp functional zones. Our results show that inhibitory synaptic transmission in Purkinje cells is necessary for the precise patterning of Purkinje cell zones and the topographic targeting of mossy fiber afferents. As expected, blocking Purkinje cell neurotransmission caused ataxia. Using in vivo electrophysiology, we demonstrate that loss of Purkinje cell communication altered the firing rate and pattern of their target cerebellar nuclear neurons. Analysis of Purkinje cell complex spike firing revealed that feedback in the cerebellar nuclei to inferior olive to Purkinje cell loop is obstructed. Loss of Purkinje neurotransmission also caused ectopic zonal expression of tyrosine hydroxylase, which is only expressed in adult Purkinje cells when calcium is dysregulated and if excitability is altered. Our results suggest that Purkinje cell inhibitory neurotransmission establishes the functional circuitry of the cerebellum by patterning the molecular zones, fine-tuning afferent circuitry, and shaping neuronal activity.


Assuntos
Cerebelo , Inibição Neural/fisiologia , Células de Purkinje/fisiologia , Transmissão Sináptica/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Peso Corporal/genética , Cerebelo/citologia , Cerebelo/embriologia , Cerebelo/crescimento & desenvolvimento , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Camundongos , Camundongos Transgênicos , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/fisiopatologia , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Inibição Neural/genética , Tamanho do Órgão/genética , Transmissão Sináptica/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
11.
J Neurosci ; 33(45): 17603-9, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24198351

RESUMO

Understanding how neurons encode information in sequences of action potentials is of fundamental importance to neuroscience. The cerebellum is widely recognized for its involvement in the coordination of movements, which requires muscle activation patterns to be controlled with millisecond precision. Understanding how cerebellar neurons accomplish such high temporal precision is critical to understanding cerebellar function. Inhibitory Purkinje cells, the only output neurons of the cerebellar cortex, and their postsynaptic target neurons in the cerebellar nuclei, fire action potentials at high, sustained frequencies, suggesting spike rate modulation as a possible code. Yet, millisecond precise spatiotemporal spike activity patterns in Purkinje cells and inferior olivary neurons have also been observed. These results and ongoing studies suggest that the neuronal code used by cerebellar neurons may span a wide time scale from millisecond precision to slow rate modulations, likely depending on the behavioral context.


Assuntos
Potenciais de Ação/fisiologia , Cerebelo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Animais , Células de Purkinje/fisiologia
12.
J Neurosci ; 32(5): 1653-9, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22302807

RESUMO

Sniffing, a high-frequency, highly rhythmic inhalation and exhalation of air through the nose, plays an important role in rodent olfaction. Similarly, whisking, the active rhythmic movement of whiskers, plays an important role in rodent tactile sensation. Rodents whisk and sniff during exploratory behavior to sample odorants and surfaces. Whisking is thought to be coordinated with sniffing and normal respiratory behavior, but the precise temporal relationships between these movements are not known. Here, using direct measurements of whisking and respiratory movements, we examined the strength and temporal dynamics of the correlation between large-amplitude whisker movements and respiratory rhythm in mice. Whisking movements were detected using an optical sensor, and respiration was monitored with a thermistor placed close to the nostril. Our measurements revealed that breathing and whisking movements were significantly correlated only when the whisking rhythm was <5 Hz. Only a fraction (~13%) of all large-amplitude whisker movements occurred during episodes of high-frequency (>5 Hz) respiration typically associated with sniffing. Our results show that that the rhythms of respiratory and whisking movements are correlated only during low-frequency whisking and respiration. High-frequency whisking and sniffing behaviors are not correlated. We conclude that whisking and respiratory rhythms are generated by independent pattern-generating mechanisms.


Assuntos
Comportamento Exploratório/fisiologia , Periodicidade , Respiração , Mecânica Respiratória/fisiologia , Vibrissas/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
13.
J Neurosci ; 32(25): 8678-85, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22723707

RESUMO

Purkinje cells (PCs) in the mammalian cerebellum express high-frequency spontaneous activity with average spike rates between 30 and 200 Hz. Cerebellar nuclear (CN) neurons receive converging input from many PCs, resulting in a continuous barrage of inhibitory inputs. It has been hypothesized that pauses in PC activity trigger increases in CN spiking activity. A prediction derived from this hypothesis is that pauses in PC simple-spike activity represent relevant behavioral or sensory events. Here, we asked whether pauses in the simple-spike activity of PCs related to either fluid licking or respiration, play a special role in representing information about behavior. Both behaviors are widely represented in cerebellar PC simple-spike activity. We recorded PC activity in the vermis and lobus simplex of head-fixed mice while monitoring licking and respiratory behavior. Using cross-correlation and Granger causality analysis, we examined whether short interspike intervals (ISIs) had a different temporal relationship to behavior than long ISIs or pauses. Behavior-related simple-spike pauses occurred during low-rate simple-spike activity in both licking- and breathing-related PCs. Granger causality analysis revealed causal relationships between simple-spike pauses and behavior. However, the same results were obtained from an analysis of surrogate spike trains with gamma ISI distributions constructed to match rate modulations of behavior-related Purkinje cells. Our results therefore suggest that the occurrence of pauses in simple-spike activity does not represent additional information about behavioral or sensory events that goes beyond the simple-spike rate modulations.


Assuntos
Comportamento Animal/fisiologia , Células de Purkinje/fisiologia , Animais , Causalidade , Córtex Cerebelar/fisiologia , Cerebelo/fisiologia , Interpretação Estatística de Dados , Fenômenos Eletrofisiológicos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Respiração
14.
Cerebellum ; 12(4): 547-56, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23436049

RESUMO

Imaging, clinical, and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area (VTA) and (2) cerebellum to mPFC via glutamatergic projections from the mediodorsal and ventrolateral thalamus (ThN md and vl). The present study compared functional adaptations of cerebello-cortical circuitry following developmental cerebellar pathology in a mouse model of developmental loss of Purkinje cells (Lurcher) and a mouse model of fragile X syndrome (Fmr1 KO mice). Fixed potential amperometry was used to measure mPFC dopamine release in response to cerebellar electrical stimulation. Mutant mice of both strains showed an attenuation in cerebellar-evoked mPFC dopamine release compared to respective wildtype mice. This was accompanied by a functional reorganization of the VTA and thalamic pathways mediating cerebellar modulation of mPFC dopamine release. Inactivation of the VTA pathway by intra-VTA lidocaine or kynurenate infusions decreased dopamine release by 50 % in wildtype and 20-30 % in mutant mice of both strains. Intra-ThN vl infusions of either drug decreased dopamine release by 15 % in wildtype and 40 % in mutant mice of both strains, while dopamine release remained relatively unchanged following intra-ThN md drug infusions. These results indicate a shift in strength towards the thalamic vl projection, away from the VTA. Thus, cerebellar neuropathologies associated with autism spectrum disorders may cause a reduction in cerebellar modulation of mPFC dopamine release that is related to a reorganization of the mediating neuronal pathways.


Assuntos
Cerebelo/metabolismo , Transtornos Globais do Desenvolvimento Infantil/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Rede Nervosa/metabolismo , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/metabolismo , Animais , Cerebelo/efeitos dos fármacos , Transtornos Globais do Desenvolvimento Infantil/genética , Infusões Intraventriculares , Ácido Cinurênico/administração & dosagem , Lidocaína/administração & dosagem , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Mutantes Neurológicos , Rede Nervosa/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos
15.
Psychol Rev ; 130(4): 1066-1080, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35980689

RESUMO

Respiratory rhythms sustain biological life, governing the homeostatic exchange of oxygen and carbon dioxide. Until recently, however, the influence of breathing on the brain has largely been overlooked. Yet new evidence demonstrates that the act of breathing exerts a substantive, rhythmic influence on perception, emotion, and cognition, largely through the direct modulation of neural oscillations. Here, we synthesize these findings to motivate a new predictive coding model of respiratory brain coupling, in which breathing rhythmically modulates both local and global neural gain, to optimize cognitive and affective processing. Our model further explains how respiratory rhythms interact with the topology of the functional connectome, and we highlight key implications for the computational psychiatry of disordered respiratory and interoceptive inference. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Encéfalo , Interocepção , Respiração , Encéfalo/fisiologia , Interocepção/fisiologia , Humanos , Afeto , Cognição , Modelos Biológicos , Neurônios/fisiologia , Conectoma
16.
Front Syst Neurosci ; 17: 1126508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064161

RESUMO

There is general agreement that cerebrocerebellar interactions via cerebellothalamocortical pathways are essential for a cerebellar cognitive and motor functions. Cerebellothalamic projections were long believed target mainly the ventral lateral (VL) and part of the ventral anterior (VA) nuclei, which project to cortical motor and premotor areas. Here we review new insights from detailed tracing studies, which show that projections from the cerebellum to the thalamus are widespread and reach almost every thalamic subnucleus, including nuclei involved in cognitive functions. These new insights into cerebellothalamic pathways beyond the motor thalamus are consistent with the increasing evidence of cerebellar cognitive function. However, the function of cerebellothalamic pathways and how they are involved in the various motor and cognitive functions of the cerebellum is still unknown. We briefly review literature on the role of the thalamus in coordinating the coherence of neuronal oscillations in the neocortex. The coherence of oscillations, which measures the stability of the phase relationship between two oscillations of the same frequency, is considered an indicator of increased functional connectivity between two structures showing coherent oscillations. Through thalamocortical interactions coherence patterns dynamically create and dissolve functional cerebral cortical networks in a task dependent manner. Finally, we review evidence for an involvement of the cerebellum in coordinating coherence of oscillations between cerebral cortical structures. We conclude that cerebellothalamic pathways provide the necessary anatomical substrate for a proposed role of the cerebellum in coordinating neuronal communication between cerebral cortical areas by coordinating the coherence of oscillations.

17.
Neurosci Biobehav Rev ; 152: 105262, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37271298

RESUMO

Breathing plays a crucial role in shaping perceptual and cognitive processes by regulating the strength and synchronisation of neural oscillations. Numerous studies have demonstrated that respiratory rhythms govern a wide range of behavioural effects across cognitive, affective, and perceptual domains. Additionally, respiratory-modulated brain oscillations have been observed in various mammalian models and across diverse frequency spectra. However, a comprehensive framework to elucidate these disparate phenomena remains elusive. In this review, we synthesise existing findings to propose a neural gradient of respiratory-modulated brain oscillations and examine recent computational models of neural oscillations to map this gradient onto a hierarchical cascade of precision-weighted prediction errors. By deciphering the computational mechanisms underlying respiratory control of these processes, we can potentially uncover new pathways for understanding the link between respiratory-brain coupling and psychiatric disorders.


Assuntos
Ondas Encefálicas , Transtornos Mentais , Animais , Humanos , Ondas Encefálicas/fisiologia , Encéfalo , Respiração , Mamíferos
18.
Commun Biol ; 6(1): 731, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454228

RESUMO

Thalamo-cortical networks are central to seizures, yet it is unclear how these circuits initiate seizures. We test whether a facial region of the thalamus, the ventral posteromedial nucleus (VPM), is a source of generalized, convulsive motor seizures and if convergent VPM input drives the behavior. To address this question, we devise an in vivo optogenetic mouse model to elicit convulsive motor seizures by driving these inputs and perform single-unit recordings during awake, convulsive seizures to define the local activity of thalamic neurons before, during, and after seizure onset. We find dynamic activity with biphasic properties, raising the possibility that heterogenous activity promotes seizures. Virus tracing identifies cerebellar and cerebral cortical afferents as robust contributors to the seizures. Of these inputs, only microinfusion of lidocaine into the cerebellar nuclei blocks seizure initiation. Our data reveal the VPM as a source of generalized convulsive seizures, with cerebellar input providing critical signals.


Assuntos
Convulsões , Núcleos Ventrais do Tálamo , Camundongos , Animais , Tálamo , Córtex Cerebral/fisiologia , Cerebelo
19.
Cerebellum ; 11(3): 777-807, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22370873

RESUMO

There has been significant advancement in various aspects of scientific knowledge concerning the role of cerebellum in the etiopathogenesis of autism. In the current consensus paper, we will observe the diversity of opinions regarding the involvement of this important site in the pathology of autism. Recent emergent findings in literature related to cerebellar involvement in autism are discussed, including: cerebellar pathology, cerebellar imaging and symptom expression in autism, cerebellar genetics, cerebellar immune function, oxidative stress and mitochondrial dysfunction, GABAergic and glutamatergic systems, cholinergic, dopaminergic, serotonergic, and oxytocin-related changes in autism, motor control and cognitive deficits, cerebellar coordination of movements and cognition, gene-environment interactions, therapeutics in autism, and relevant animal models of autism. Points of consensus include presence of abnormal cerebellar anatomy, abnormal neurotransmitter systems, oxidative stress, cerebellar motor and cognitive deficits, and neuroinflammation in subjects with autism. Undefined areas or areas requiring further investigation include lack of treatment options for core symptoms of autism, vermal hypoplasia, and other vermal abnormalities as a consistent feature of autism, mechanisms underlying cerebellar contributions to cognition, and unknown mechanisms underlying neuroinflammation.


Assuntos
Transtorno Autístico/patologia , Cerebelo/patologia , Animais , Transtorno Autístico/genética , Transtorno Autístico/imunologia , Transtorno Autístico/metabolismo , Transtorno Autístico/terapia , Moléculas de Adesão Celular Neuronais/metabolismo , Doenças Cerebelares/genética , Doenças Cerebelares/imunologia , Cerebelo/imunologia , Cerebelo/metabolismo , Cerebelo/fisiopatologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Interação Gene-Ambiente , Ácido Glutâmico/metabolismo , Humanos , Imageamento por Ressonância Magnética , Mitocôndrias/metabolismo , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Neurotransmissores/metabolismo , Estresse Oxidativo , Proteína Reelina , Serina Endopeptidases/metabolismo , Ácido gama-Aminobutírico/metabolismo
20.
Am J Med Genet A ; 158A(11): 2807-14, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22991245

RESUMO

A quantitative long-term fluid consumption and fluid-licking assay was performed in two mouse models with either an ∼2 Mb genomic deletion, Df(11)17, or the reciprocal duplication copy number variation (CNV), Dp(11)17, analogous to the human genomic rearrangements causing either Smith-Magenis syndrome [SMS; OMIM #182290] or Potocki-Lupski syndrome [PTLS; OMIM #610883], respectively. Both mouse strains display distinct quantitative alterations in fluid consumption compared to their wild-type littermates; several of these changes are diametrically opposing between the two chromosome engineered mouse models. Mice with duplication versus deletion showed longer versus shorter intervals between visits to the waterspout, generated more versus less licks per visit and had higher versus lower variability in the number of licks per lick-burst as compared to their respective wild-type littermates. These findings suggest that copy number variation can affect long-term fluid consumption behavior in mice. Other behavioral differences were unique for either the duplication or deletion mutants; the deletion CNV resulted in increased variability of the licking rhythm, and the duplication CNV resulted in a significant slowing of the licking rhythm. Our findings document a readily quantitated complex behavioral response that can be directly and reciprocally influenced by a gene dosage effect.


Assuntos
Dosagem de Genes , Fenótipo , Síndrome de Smith-Magenis/genética , Anormalidades Múltiplas , Animais , Comportamento Animal , Transtornos Cromossômicos , Duplicação Cromossômica , Modelos Animais de Doenças , Ingestão de Líquidos , Estudos de Associação Genética , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA