Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 18(39): e2203126, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36026538

RESUMO

Synthesis and coating of multi-metal oxides (MMOs) and alloys on conductive substrates are indispensable to electrochemical applications, yet demand multiple, resource-intensive, and time-consuming processes. Herein, an alternative approach to the synthesis and coating of alloys and MMOs by femtosecond laser direct writing (FsLDW) is reported. A solution-based precursor ink is deposited and dried on the substrate and illuminated by a femtosecond laser. During the illumination, dried precursor ink is transformed to MMO/alloys and is simultaneously bonded to the substrate. The formulation of the alloy and MMO precursor ink for laser processing is universally applicable to a large family of oxides and alloys. The process is conducted at room temperature and in an open atmosphere. To demonstrate, a large family of 57 MMOs and alloys are synthesized from a group of 13 elements. As a proof of concept, Ni0.24 Co0.23 Cu0.24 Fe0.15 Cr0.14 high entropy alloy synthesized on stainless-steel foil by FsLDW is used for the oxygen evolution reaction, which achieves a current density of 10 mA cm-2 at a significantly low overpotential of 213 mV. Further, FsLDW can also achieve microfabrication of alloys/MMO with feature sizes down to 20 µm.

2.
Front Robot AI ; 11: 1356692, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863780

RESUMO

Soft grippers are garnering increasing attention for their adeptness in conforming to diverse objects, particularly delicate items, without warranting precise force control. This attribute proves especially beneficial in unstructured environments and dynamic tasks such as food handling. Human hands, owing to their elevated dexterity and precise motor control, exhibit the ability to delicately manipulate complex food items, such as small or fragile objects, by dynamically adjusting their grasping configurations. Furthermore, with their rich sensory receptors and hand-eye coordination that provide valuable information involving the texture and form factor, real-time adjustments to avoid damage or spill during food handling appear seamless. Despite numerous endeavors to replicate these capabilities through robotic solutions involving soft grippers, matching human performance remains a formidable engineering challenge. Robotic competitions serve as an invaluable platform for pushing the boundaries of manipulation capabilities, simultaneously offering insights into the adoption of these solutions across diverse domains, including food handling. Serving as a proxy for the future transition of robotic solutions from the laboratory to the market, these competitions simulate real-world challenges. Since 2021, our research group has actively participated in RoboSoft competitions, securing victories in the Manipulation track in 2022 and 2023. Our success was propelled by the utilization of a modified iteration of our Retractable Nails Soft Gripper (RNSG), tailored to meet the specific requirements of each task. The integration of sensors and collaborative manipulators further enhanced the gripper's performance, facilitating the seamless execution of complex grasping tasks associated with food handling. This article encapsulates the experiential insights gained during the application of our highly versatile soft gripper in these competition environments.

3.
Mater Horiz ; 10(5): 1806-1815, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36857680

RESUMO

Photoelectrochemical water splitting is one of the sustainable routes to renewable hydrogen production. One of the challenges to deploying photoelectrochemical (PEC) based electrolyzers is the difficulty in the effective capture of solar radiation as the illumination angle changes throughout the day. Herein, we demonstrate a method for the angle-independent capture of solar irradiation by using transparent 3 dimensional (3D) lattice structures as the photoanode in PEC water splitting. The transparent 3D lattice structures were fabricated by 3D printing a silica sol-gel followed by aging and sintering. These transparent 3D lattice structures were coated with a conductive indium tin oxide (ITO) thin film and a Mo-doped BiVO4 photoanode thin film by dip coating. The sheet resistance of the conductive lattice structures can reach as low as 340 Ohms per sq for ∼82% optical transmission. The 3D lattice structures furnished large volumetric current densities of 1.39 mA cm-3 which is about 2.4 times higher than a flat glass substrate (0.58 mA cm-3) at 1.23 V and 1.5 G illumination. Further, the 3D lattice structures showed no significant loss in performance due to a change in the angle of illumination, whereas the performance of the flat glass substrate was significantly affected. This work opens a new paradigm for more effective capture of solar radiation that will increase the solar to energy conversion efficiency.

4.
ACS Nano ; 17(16): 15277-15307, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37530475

RESUMO

Soft robotics is an exciting field of science and technology that enables robots to manipulate objects with human-like dexterity. Soft robots can handle delicate objects with care, access remote areas, and offer realistic feedback on their handling performance. However, increased dexterity and mechanical compliance of soft robots come with the need for accurate control of the position and shape of these robots. Therefore, soft robots must be equipped with sensors for better perception of their surroundings, location, force, temperature, shape, and other stimuli for effective usage. This review highlights recent progress in sensing feedback technologies for soft robotic applications. It begins with an introduction to actuation technologies and material selection in soft robotics, followed by an in-depth exploration of various types of sensors, their integration methods, and the benefits of multimodal sensing, signal processing, and control strategies. A short description of current market leaders in soft robotics is also included in the review to illustrate the growing demands of this technology. By examining the latest advancements in sensing feedback technologies for soft robots, this review aims to highlight the potential of soft robotics and inspire innovation in the field.

5.
Nanoscale ; 12(15): 8432-8442, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32239051

RESUMO

The necessity of Earth-abundant low-cost catalysts with activity similar to noble metals such as platinum is indispensable in order to realize the production of hydrogen through electrolysis of water. Herein, we report a relatively low-cost NiAg0.4 3D porous nanocluster catalyst whose activity matches with that of the state-of-the-art Pt/C in 1 M KOH solution. The catalyst is designed on the principle of creating an interface between a metal having a positive Gibbs energy of hydrogen adsorption and a metal of negative Gibbs energy based on the volcano plot, to tune the Gibbs energy of hydrogen adsorption near zero for enhanced hydrogen evolution. The synthesized NiAg0.4 3D porous nanoclusters are comprised of nanoparticles of lateral dimension ∼50 nm forming a 3D porous network with pores of 10 nm-80 nm. A high-resolution transmission electron microscopy image reveals the epitaxial growth of Ag (200) on the Ni (111) plane leading to the creation of abundant interfaces between the Ni and Ag lattices. The catalyst needs a low overpotential of 40 mV@10 mA cm-2 with a Tafel slope of 39.1 mV dec-1 in 1 M KOH solution. Furthermore, the catalyst exhibits a high specific activity of 0.1 mA cm-2(ECSA) at an overpotential (η) of 45 mV which matches with the specific activity of Pt/C 20% wt. catalyst (0.1 mA cm-2@η = 26 mV). Density functional theory calculations reveal that the Ni-Ag interface furnishes a pathway with a reduced Gibbs energy of adsorption of -0.04 eV, thus promoting enhanced hydrogen evolution. In summary, this study reveals excellent HER activity at the Ni-Ag interface.

6.
ACS Appl Mater Interfaces ; 12(2): 2380-2389, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31845572

RESUMO

Highly active catalysts from the earth-abundant metals are essential to materialize the low-cost production of hydrogen through water splitting. Herein, nickel porous networks codoped with Cu and Fe prepared by thermal reduction of presynthesized Cu, Fe-codoped Ni(OH)2 nanowires are reported. The sample consists of nanoparticles of ∼80 nm, which form highly porous network clusters of ∼1 µm with a pore size of 10-100 nm. Among the various doped compositions, the NiCu0.05Fe0.025 porous network exhibits the best catalytic activity with a low overpotential of 60 mV for a hydrogen evolution reaction (HER) in 1 M KOH solution and a specific activity of 0.1 mA cm-2 at 117 mV overpotential calculated based on the electrochemical active surface area (ECSA). The density functional theory calculations reveal that codoping of Fe and Cu into the Ni lattice results in a shift of d-bands of nickel to lower energy levels and thus in the reduced hydrogen adsorption energy (ΔGH = -0.131 eV), which is close to ΔGH for Pt (-0.09 eV). When NiCu0.05Fe0.025(OH)2 nanowires is used as an oxygen evolution reaction (OER) catalyst and is coupled with NiCu0.05Fe0.025 porous networks for overall water splitting, the NiCu0.05Fe0.025∥NiCu0.05Fe0.025(OH)2 catalyst couple achieves a current density of 10 mA cm-2 at 1.491 V, similar to that of the Pt/C∥RuO2 couple and offers a negligible loss in the performance when operated at 20 mA cm-2 for 30 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA