Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 24(2): 89-106, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36448235

RESUMO

BACKGROUND: Plasmodiophora brassicae is the causal agent of clubroot disease of cruciferous plants and one of the biggest threats to the rapeseed (Brassica napus) and brassica vegetable industry worldwide. DISEASE SYMPTOMS: In the advanced stages of clubroot disease wilting, stunting, yellowing, and redness are visible in the shoots. However, the typical symptoms of the disease are the presence of club-shaped galls in the roots of susceptible hosts that block the absorption of water and nutrients. HOST RANGE: Members of the family Brassicaceae are the primary host of the pathogen, although some members of the family, such as Bunias orientalis, Coronopus squamatus, and Raphanus sativus, have been identified as being consistently resistant to P. brassicae isolates with variable virulence profile. TAXONOMY: Class: Phytomyxea; Order: Plasmodiophorales; Family: Plasmodiophoraceae; Genus: Plasmodiophora; Species: Plasmodiophora brassicae (Woronin, 1877). DISTRIBUTION: Clubroot disease is spread worldwide, with reports from all continents except Antarctica. To date, clubroot disease has been reported in more than 80 countries. PATHOTYPING: Based on its virulence on different hosts, P. brassicae is classified into pathotypes or races. Five main pathotyping systems have been developed to understand the relationship between P. brassicae and its hosts. Nowadays, the Canadian clubroot differential is extensively used in Canada and has so far identified 36 different pathotypes based on the response of a set of 13 hosts. EFFECTORS AND RESISTANCE: After the identification and characterization of the clubroot pathogen SABATH-type methyltransferase PbBSMT, several other effectors have been characterized. However, no avirulence gene is known, hindering the functional characterization of the five intercellular nucleotide-binding (NB) site leucine-rich-repeat (LRR) receptors (NLRs) clubroot resistance genes validated to date. IMPORTANT LINK: Canola Council of Canada is constantly updating information about clubroot and P. brassicae as part of their Canola Encyclopedia: https://www.canolacouncil.org/canola-encyclopedia/diseases/clubroot/. PHYTOSANITARY CATEGORIZATION: PLADBR: EPPO A2 list; Annex designation 9E.


Assuntos
Brassica napus , Brassica , Plasmodioforídeos , Doenças das Plantas , Canadá
2.
Front Plant Sci ; 13: 1060428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483948

RESUMO

Septoria tritici blotch (STB; Zymoseptoria tritici) is a severe leaf disease on wheat in Northern Europe. Fungicide resistance in the populations of Z. tritici is increasingly challenging future control options. Twenty-five field trials were carried out in nine countries across Europe from 2019 to 2021 to investigate the efficacy of specific DMI and SDHI fungicides against STB. During the test period, two single DMIs (prothioconazole and mefentrifluconazole) and four different SDHIs (fluxapyroxad, bixafen, benzovindiflupyr and fluopyram) along with different co-formulations of DMIs and SDHIs applied at flag leaf emergence were tested. Across all countries, significant differences in azole performances against STB were seen; prothioconazole was outperformed in all countries by mefentrifluconazole. The effects also varied substantially between the SDHIs, with fluxapyroxad providing the best efficacy overall, while the performance of fluopyram was inferior to other SDHIs. In Ireland and the UK, the efficacy of SDHIs was significantly lower compared with results from continental Europe. This reduction in performances from both DMIs and SDHIs was reflected in yield responses and also linked to decreased sensitivity of Z. tritici isolates measured as EC50 values. A clear and significant gradient in EC50 values was seen across Europe. The lower sensitivity to SDHIs in Ireland and the UK was coincident with the prevalence of SDH-C-alterations T79N, N86S, and sporadically of H152R. The isolates' sensitivity to SDHIs showed a clear cross-resistance between fluxapyroxad, bixafen, benzovindiflupyr and fluopyram, although the links with the latter were less apparent. Co-formulations of DMIs + SDHIs performed well in all trials conducted in 2021. Only minor differences were seen between fluxapyroxad + mefentrifluconazole and bixafen + fluopyram + prothioconazole; the combination of benzovindiflupyr + prothioconazole gave an inferior performance at some sites. Fenpicoxamid performed in line with the most effective co-formulations. This investigation shows a clear link between reduced field efficacy by solo SDHIs as a result of increasing problems with sensitivity shifting and the selection of several SDH-C mutations. The presented data stress the need to practice anti-resistance strategies to delay further erosion of fungicide efficacy.

3.
Front Cell Infect Microbiol ; 11: 730297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557427

RESUMO

Plant pathogens cause significant damage to plant products, compromising both quantities and quality. Even though many elements of agricultural practices are an integral part of reducing disease attacks, modern agriculture is still highly reliant on fungicides to guarantee high yields and product quality. The azoles, 14-alpha demethylase inhibitors, have been the fungicide class used most widely to control fungal plant diseases for more than four decades. More than 25 different azoles have been developed for the control of plant diseases in crops and the group has a world market value share of 20-25%. Azoles have proven to provide long-lasting control of many target plant pathogens and are categorized to have moderate risk for developing fungicide resistance. Field performances against many fungal pathogens have correspondingly been stable or only moderately reduced over time. Hence azoles are still, to date, considered the backbone in many control strategies and widely used as solo fungicides or as mixing partners with other fungicide groups, broadening the control spectrum as well as minimizing the overall risk of resistance development. This review describes the historic perspective of azoles, their market shares and importance for production of major crops like cereals, rice, oilseed rape, sugar beet, banana, citrus, and soybeans. In addition, information regarding use in amenity grass, in the wood preservation industry and as plant growth regulators are described. At the end of the review azoles are discussed in a wider context including future threats following stricter requirements for registration and potential impact on human health.


Assuntos
Azóis , Farmacorresistência Fúngica , Agricultura , Azóis/farmacologia , Horticultura , Humanos , Madeira
4.
Microorganisms ; 9(4)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921542

RESUMO

Zymoseptoria tritici (Zt) populations adapt under the selection pressure of fungicides applied for disease control. The primary objective of this study was to assess fungicide sensitivity in the Estonian Zt population. A total of 282 Zt isolates from 2019 and 2020 were tested for sensitivity to azoles (DMIs; prothioconazole-desthio, epoxiconazole, mefentrifluconazole) and succinate dehydrogenase inhibitors (SDHIs; boscalid, fluxapyroxad). The efficacy of the tested fungicides varied considerably between the Estonian counties, but the Zt population is mainly sensitive to DMIs. Additionally, the frequencies of CYP51 gene alterations varied; D134G, V136C, A379G, and S524T had increased, but V136A and I381V showed a moderate decrease in 2020 in comparison to 2019. Sensitivity to SDHIs was stable, but boscalid was less effective than fluxapyroxad. SdhC gene mutations C-T33N, C-T34N, and C-N86S were common, but not linked with SDHI fungicide sensitivity assay results. Otherwise, mutation B-N225I in the SdhB subunit occurred in isolates with reduced sensitivity to SDHIs. Sensitivity to strobilurins was evaluated by the mutation G143A in the CytB gene, which was present in nearly half of the population. The data presented confirm the ongoing evolution of fungicide sensitivity in the Zt population in Estonia and highlight the importance of knowledge-based decisions for optimizing anti-resistance strategies in the field.

5.
Front Plant Sci ; 11: 385, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351520

RESUMO

Septoria tritici blotch (STB) is caused by the ascomycete Zymoseptoria tritici and one of the predominating diseases in wheat (Triticum aestivum) in Europe. The control of STB is highly reliant on frequent fungicide applications. The primary objective of this study was to assess sensitivity levels of Z. tritici to different fungicide groups. The fungicides included in this study were epoxiconazole, prothioconazole-desthio, tebuconazole, and fluxapyroxad. A panel of 63 isolates from Estonia, Latvia, and Lithuania, and 10 isolates from Finland were tested. Fungicide sensitivity testing was carried out as a bioassay analyzing single pycnidium isolates on different fungicide concentrations. The average EC50 value in Baltic countries and Finland to epoxiconazole was high ranging from 1.04 to 2.19 ppm. For prothioconazole-desthio and tebuconazole, EC50 varied from 0.01 to 0.24 ppm, and 1.25 to 18.23 ppm, respectively. The average EC50 value for fluxapyroxad varied from 0.07 to 0.33 ppm. To explain the range of sensitivity, the samples were analyzed for CYP51 and Sdh mutations, as well as cytb G143A, CYP51 overexpression, and multidrug resistance (MDR). Frequencies of ZtCYP51 mutations D134G, V136A/C, A379G, I381V, and S524T in the Finnish-Baltic region were lower than in other European countries, but have increased compared to previous years. The frequency of cytb G143A conferring strobilurin resistance also augmented to 50-70% in the Z. tritici populations from Estonia, Finland, Latvia, and Lithuania. No Sdh mutations were found in this study, and neither strains of MDR phenotypes. However, we found a strain harboring a previously unknown transposon insertion in the promoter of the MFS1 gene, involved in drug efflux and multi-drug resistance. This new insert, however, does not confer an MDR phenotype to the strain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA