Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell ; 187(8): 1971-1989.e16, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38521060

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) share many clinical, pathological, and genetic features, but a detailed understanding of their associated transcriptional alterations across vulnerable cortical cell types is lacking. Here, we report a high-resolution, comparative single-cell molecular atlas of the human primary motor and dorsolateral prefrontal cortices and their transcriptional alterations in sporadic and familial ALS and FTLD. By integrating transcriptional and genetic information, we identify known and previously unidentified vulnerable populations in cortical layer 5 and show that ALS- and FTLD-implicated motor and spindle neurons possess a virtually indistinguishable molecular identity. We implicate potential disease mechanisms affecting these cell types as well as non-neuronal drivers of pathogenesis. Finally, we show that neuron loss in cortical layer 5 tracks more closely with transcriptional identity rather than cellular morphology and extends beyond previously reported vulnerable cell types.


Assuntos
Esclerose Lateral Amiotrófica , Degeneração Lobar Frontotemporal , Córtex Pré-Frontal , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Perfilação da Expressão Gênica , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Análise da Expressão Gênica de Célula Única
2.
Cell ; 178(3): 521-535.e23, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348885

RESUMO

Intracellular accumulation of misfolded proteins causes toxic proteinopathies, diseases without targeted therapies. Mucin 1 kidney disease (MKD) results from a frameshift mutation in the MUC1 gene (MUC1-fs). Here, we show that MKD is a toxic proteinopathy. Intracellular MUC1-fs accumulation activated the ATF6 unfolded protein response (UPR) branch. We identified BRD4780, a small molecule that clears MUC1-fs from patient cells, from kidneys of knockin mice and from patient kidney organoids. MUC1-fs is trapped in TMED9 cargo receptor-containing vesicles of the early secretory pathway. BRD4780 binds TMED9, releases MUC1-fs, and re-routes it for lysosomal degradation, an effect phenocopied by TMED9 deletion. Our findings reveal BRD4780 as a promising lead for the treatment of MKD and other toxic proteinopathies. Generally, we elucidate a novel mechanism for the entrapment of misfolded proteins by cargo receptors and a strategy for their release and anterograde trafficking to the lysosome.


Assuntos
Benzamidas/metabolismo , Compostos Bicíclicos com Pontes/farmacologia , Heptanos/farmacologia , Lisossomos/efeitos dos fármacos , Proteínas de Transporte Vesicular/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Animais , Benzamidas/química , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/uso terapêutico , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Mutação da Fase de Leitura , Heptanos/uso terapêutico , Humanos , Receptores de Imidazolinas/antagonistas & inibidores , Receptores de Imidazolinas/genética , Receptores de Imidazolinas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/citologia , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mucina-1/química , Mucina-1/genética , Mucina-1/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteínas de Transporte Vesicular/química
3.
Nature ; 603(7903): 893-899, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35158371

RESUMO

Despite the importance of the cerebrovasculature in maintaining normal brain physiology and in understanding neurodegeneration and drug delivery to the central nervous system1, human cerebrovascular cells remain poorly characterized owing to their sparsity and dispersion. Here we perform single-cell characterization of the human cerebrovasculature using both ex vivo fresh tissue experimental enrichment and post mortem in silico sorting of human cortical tissue samples. We capture 16,681 cerebrovascular nuclei across 11 subtypes, including endothelial cells, mural cells and three distinct subtypes of perivascular fibroblast along the vasculature. We uncover human-specific expression patterns along the arteriovenous axis and determine previously uncharacterized cell-type-specific markers. We use these human-specific signatures to study changes in 3,945 cerebrovascular cells from patients with Huntington's disease, which reveal activation of innate immune signalling in vascular and glial cell types and a concomitant reduction in the levels of proteins critical for maintenance of blood-brain barrier integrity. Finally, our study provides a comprehensive molecular atlas of the human cerebrovasculature to guide future biological and therapeutic studies.


Assuntos
Células Endoteliais , Doença de Huntington , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Humanos , Doença de Huntington/metabolismo , Sistema Imunitário , Neuroglia , Proteínas/metabolismo
4.
Nature ; 593(7857): 114-118, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33790466

RESUMO

Innate social behaviours, such as mating and fighting, are fundamental to animal reproduction and survival1. However, social engagements can also put an individual at risk2. Little is known about the neural mechanisms that enable appropriate risk assessment and the suppression of hazardous social interactions. Here we identify the posteromedial nucleus of the cortical amygdala (COApm) as a locus required for the suppression of male mating when a female mouse is unhealthy. Using anatomical tracing, functional imaging and circuit-level epistatic analyses, we show that suppression of mating with an unhealthy female is mediated by the COApm projections onto the glutamatergic population of the medial amygdalar nucleus (MEA). We further show that the role of the COApm-to-MEA connection in regulating male mating behaviour relies on the neuromodulator thyrotropin-releasing hormone (TRH). TRH is expressed in the COApm, whereas the TRH receptor (TRHR) is found in the postsynaptic MEA glutamatergic neurons. Manipulating neural activity of TRH-expressing neurons in the COApm modulated male mating behaviour. In the MEA, activation of the TRHR pathway by ligand infusion inhibited mating even towards healthy female mice, whereas genetic ablation of TRHR facilitated mating with unhealthy individuals. In summary, we reveal a neural pathway that relies on the neuromodulator TRH to modulate social interactions according to the health status of the reciprocating individual. Individuals must balance the cost of social interactions relative to the benefit, as deficits in the ability to select healthy mates may lead to the spread of disease.


Assuntos
Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Preferência de Acasalamento Animal/fisiologia , Vias Neurais/fisiologia , Comportamento Social , Animais , Copulação/fisiologia , Complexo Nuclear Corticomedial/citologia , Complexo Nuclear Corticomedial/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Saúde , Ligantes , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Neurônios/metabolismo , Receptores do Hormônio Liberador da Tireotropina/metabolismo , Hormônio Liberador de Tireotropina/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(35): e2205425119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994651

RESUMO

Chorea-acanthocytosis (ChAc) and McLeod syndrome are diseases with shared clinical manifestations caused by mutations in VPS13A and XK, respectively. Key features of these conditions are the degeneration of caudate neurons and the presence of abnormally shaped erythrocytes. XK belongs to a family of plasma membrane (PM) lipid scramblases whose action results in exposure of PtdSer at the cell surface. VPS13A is an endoplasmic reticulum (ER)-anchored lipid transfer protein with a putative role in the transport of lipids at contacts of the ER with other membranes. Recently VPS13A and XK were reported to interact by still unknown mechanisms. So far, however, there is no evidence for a colocalization of the two proteins at contacts of the ER with the PM, where XK resides, as VPS13A was shown to be localized at contacts between the ER and either mitochondria or lipid droplets. Here we show that VPS13A can also localize at ER-PM contacts via the binding of its PH domain to a cytosolic loop of XK, that such interaction is regulated by an intramolecular interaction within XK, and that both VPS13A and XK are highly expressed in the caudate neurons. Binding of the PH domain of VPS13A to XK is competitive with its binding to intracellular membranes that mediate other tethering functions of VPS13A. Our findings support a model according to which VPS13A-dependent lipid transfer between the ER and the PM is coupled to lipid scrambling within the PM. They raise the possibility that defective cell surface exposure of PtdSer may be responsible for neurodegeneration.


Assuntos
Proteínas de Transporte , Membrana Celular , Lipídeos , Proteínas de Transporte Vesicular , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Humanos , Neuroacantocitose/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
Cell ; 135(4): 738-48, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19013281

RESUMO

The cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations. Using bacterial artificial chromosome (BAC) transgenic mice that express EGFP-tagged ribosomal protein L10a in defined cell populations, we have developed a methodology for affinity purification of polysomal mRNAs from genetically defined cell populations in the brain. The utility of this approach is illustrated by the comparative analysis of four types of neurons, revealing hundreds of genes that distinguish these four cell populations. We find that even two morphologically indistinguishable, intermixed subclasses of medium spiny neurons display vastly different translational profiles and present examples of the physiological significance of such differences. This genetically targeted translating ribosome affinity purification (TRAP) methodology is a generalizable method useful for the identification of molecular changes in any genetically defined cell type in response to genetic alterations, disease, or pharmacological perturbations.


Assuntos
Encéfalo/metabolismo , Técnicas Genéticas , Biossíntese de Proteínas , Animais , Sistema Nervoso Central/metabolismo , Cromossomos Artificiais Bacterianos/metabolismo , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica/métodos , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Neurônios/metabolismo , Ribossomos/metabolismo
7.
Cell ; 135(4): 749-62, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19013282

RESUMO

Comparative analysis can provide important insights into complex biological systems. As demonstrated in the accompanying paper, translating ribosome affinity purification (TRAP) permits comprehensive studies of translated mRNAs in genetically defined cell populations after physiological perturbations. To establish the generality of this approach, we present translational profiles for 24 CNS cell populations and identify known cell-specific and enriched transcripts for each population. We report thousands of cell-specific mRNAs that were not detected in whole-tissue microarray studies and provide examples that demonstrate the benefits deriving from comparative analysis. To provide a foundation for further biological and in silico studies, we provide a resource of 16 transgenic mouse lines, their corresponding anatomic characterization, and translational profiles for cell types from a variety of central nervous system structures. This resource will enable a wide spectrum of molecular and mechanistic studies of both well-known and previously uncharacterized neural cell populations.


Assuntos
Encéfalo/metabolismo , Técnicas Genéticas , Biossíntese de Proteínas , Animais , Sistema Nervoso Central/metabolismo , Cromossomos Artificiais Bacterianos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica/métodos , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribossomos/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(8): E1896-E1905, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29437957

RESUMO

The decline of cognitive function occurs with aging, but the mechanisms responsible are unknown. Astrocytes instruct the formation, maturation, and elimination of synapses, and impairment of these functions has been implicated in many diseases. These findings raise the question of whether astrocyte dysfunction could contribute to cognitive decline in aging. We used the Bac-Trap method to perform RNA sequencing of astrocytes from different brain regions across the lifespan of the mouse. We found that astrocytes have region-specific transcriptional identities that change with age in a region-dependent manner. We validated our findings using fluorescence in situ hybridization and quantitative PCR. Detailed analysis of the differentially expressed genes in aging revealed that aged astrocytes take on a reactive phenotype of neuroinflammatory A1-like reactive astrocytes. Hippocampal and striatal astrocytes up-regulated a greater number of reactive astrocyte genes compared with cortical astrocytes. Moreover, aged brains formed many more A1 reactive astrocytes in response to the neuroinflammation inducer lipopolysaccharide. We found that the aging-induced up-regulation of reactive astrocyte genes was significantly reduced in mice lacking the microglial-secreted cytokines (IL-1α, TNF, and C1q) known to induce A1 reactive astrocyte formation, indicating that microglia promote astrocyte activation in aging. Since A1 reactive astrocytes lose the ability to carry out their normal functions, produce complement components, and release a toxic factor which kills neurons and oligodendrocytes, the aging-induced up-regulation of reactive genes by astrocytes could contribute to the cognitive decline in vulnerable brain regions in normal aging and contribute to the greater vulnerability of the aged brain to injury.


Assuntos
Envelhecimento/metabolismo , Astrócitos/metabolismo , Envelhecimento/genética , Envelhecimento/psicologia , Animais , Cognição , Feminino , Perfilação da Expressão Gênica , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neurônios/metabolismo , RNA/genética , RNA/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
9.
Proc Natl Acad Sci U S A ; 112(1): 268-72, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25535386

RESUMO

Huntington's disease, the most common inherited neurodegenerative disease, is characterized by a dramatic loss of deep-layer cortical and striatal neurons, as well as morbidity in midlife. Human genetic studies led to the identification of the causative gene, huntingtin. Recent genomic advances have also led to the identification of hundreds of potential interacting partners for huntingtin protein and many hypotheses as to the molecular mechanisms whereby mutant huntingtin leads to cellular dysfunction and death. However, the multitude of possible interacting partners and cellular pathways affected by mutant huntingtin has complicated efforts to understand the etiology of this disease, and to date no curative therapeutic exists. To address the general problem of identifying the disease-phenotype contributing genes from a large number of correlative studies, here we develop a synthetic lethal screening methodology for the mammalian central nervous system, called SLIC, for synthetic lethal in the central nervous system. Applying SLIC to the study of Huntington's disease, we identify the age-regulated glutathione peroxidase 6 (Gpx6) gene as a modulator of mutant huntingtin toxicity and show that overexpression of Gpx6 can dramatically alleviate both behavioral and molecular phenotypes associated with a mouse model of Huntington's disease. SLIC can, in principle, be used in the study of any neurodegenerative disease for which a mouse model exists, promising to reveal modulators of neurodegenerative disease in an unbiased fashion, akin to screens in simpler model organisms.


Assuntos
Sistema Nervoso Central/enzimologia , Sistema Nervoso Central/patologia , Glutationa Peroxidase/metabolismo , Doença de Huntington/enzimologia , Doença de Huntington/patologia , Animais , Comportamento Animal , Sistema Nervoso Central/fisiopatologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Camundongos , Atividade Motora , Neostriado/metabolismo , Neostriado/patologia , Neostriado/fisiopatologia
10.
Proc Natl Acad Sci U S A ; 111(12): 4578-83, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24599591

RESUMO

Levodopa treatment is the major pharmacotherapy for Parkinson's disease. However, almost all patients receiving levodopa eventually develop debilitating involuntary movements (dyskinesia). Although it is known that striatal spiny projection neurons (SPNs) are involved in the genesis of this movement disorder, the molecular basis of dyskinesia is not understood. In this study, we identify distinct cell-type-specific gene-expression changes that occur in subclasses of SPNs upon induction of a parkinsonian lesion followed by chronic levodopa treatment. We identify several hundred genes, the expression of which is correlated with levodopa dose, many of which are under the control of activator protein-1 and ERK signaling. Despite homeostatic adaptations involving several signaling modulators, activator protein-1-dependent gene expression remains highly dysregulated in direct pathway SPNs upon chronic levodopa treatment. We also discuss which molecular pathways are most likely to dampen abnormal dopaminoceptive signaling in spiny projection neurons, hence providing potential targets for antidyskinetic treatments in Parkinson's disease.


Assuntos
Corpo Estriado/efeitos dos fármacos , Discinesia Induzida por Medicamentos/genética , Levodopa/efeitos adversos , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Dopamina/metabolismo , Expressão Gênica , Homeostase , Camundongos
11.
Proc Natl Acad Sci U S A ; 111(49): 17636-41, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25413364

RESUMO

Recurrent axon collaterals are a major means of communication between spiny projection neurons (SPNs) in the striatum and profoundly affect the function of the basal ganglia. However, little is known about the molecular and cellular mechanisms that underlie this communication. We show that intrastriatal nitric oxide (NO) signaling elevates the expression of the vesicular GABA transporter (VGAT) within recurrent collaterals of SPNs. Down-regulation of striatal NO signaling resulted in an attenuation of GABAergic signaling in SPN local collaterals, down-regulation of VGAT expression in local processes of SPNs, and impaired motor behavior. PKG1 and cAMP response element-binding protein are involved in the signal transduction that transcriptionally regulates VGAT by NO. These data suggest that transcriptional control of the vesicular GABA transporter by NO regulates GABA transmission and action selection.


Assuntos
Gânglios da Base/metabolismo , Guanilato Ciclase/química , Neurônios/metabolismo , Óxido Nítrico/química , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/química , Animais , Axônios/metabolismo , AMP Cíclico/metabolismo , Dopamina/metabolismo , Eletrofisiologia , Retroalimentação Fisiológica , Feminino , Proteínas de Fluorescência Verde/metabolismo , Levodopa/química , Masculino , Camundongos , Plasticidade Neuronal , Oxidopamina/química , Transdução de Sinais , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
12.
J Neurosci ; 35(30): 10762-72, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26224859

RESUMO

Hyperactivation of the mechanistic target of rapamycin (mTOR) kinase, as a result of loss-of-function mutations in tuberous sclerosis complex 1 (TSC1) or TSC2 genes, causes protein synthesis dysregulation, increased cell size, and aberrant neuronal connectivity. Dysregulated synthesis of synaptic proteins has been implicated in the pathophysiology of autism spectrum disorder (ASD) associated with TSC and fragile X syndrome. However, cell type-specific translational profiles in these disease models remain to be investigated. Here, we used high-fidelity and unbiased Translating Ribosome Affinity Purification (TRAP) methodology to purify ribosome-associated mRNAs and identified translational alterations in a rat neuronal culture model of TSC. We find that expression of many stress and/or activity-dependent proteins is highly induced while some synaptic proteins are repressed. Importantly, transcripts for the activating transcription factor-3 (Atf3) and mitochondrial uncoupling protein-2 (Ucp2) are highly induced in Tsc2-deficient neurons, as well as in a neuron-specific Tsc1 conditional knock-out mouse model, and show differential responses to the mTOR inhibitor rapamycin. Gelsolin, a known target of Atf3 transcriptional activity, is also upregulated. shRNA-mediated block of Atf3 induction suppresses expression of gelsolin, an actin-severing protein, and rescues spine deficits found in Tsc2-deficient neurons. Together, our data demonstrate that a cell-autonomous program consisting of a stress-induced Atf3-gelsolin cascade affects the change in dendritic spine morphology following mTOR hyperactivation. This previously unidentified molecular cascade could be a therapeutic target for treating mTORopathies. SIGNIFICANCE STATEMENT: Tuberous sclerosis complex (TSC) is a genetic disease associated with epilepsy and autism. Dysregulated protein synthesis has been implicated as a cause of this disease. However, cell type-specific translational profiles that are aberrant in this disease are unknown. Here we show that expression of many stress and/or activity-dependent proteins is highly induced while some synaptic proteins are repressed in neurons missing the Tsc2 gene expression. Identification of genes whose translation is abnormal in TSC may provide insights to previously unidentified therapeutic targets.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Gelsolina/metabolismo , Esclerose Tuberosa/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Mutantes , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma , Transfecção , Esclerose Tuberosa/patologia
13.
Proc Natl Acad Sci U S A ; 110(23): 9511-6, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23690581

RESUMO

Drugs of abuse, such as cocaine, induce changes in gene expression and epigenetic marks including alterations in histone posttranslational modifications in striatal neurons. These changes are thought to participate in physiological memory mechanisms and to be critical for long-term behavioral alterations. However, the striatum is composed of multiple cell types, including two distinct populations of medium-sized spiny neurons, and little is known concerning the cell-type specificity of epigenetic modifications. To address this question we used bacterial artificial chromosome transgenic mice, which express EGFP fused to the N-terminus of the large subunit ribosomal protein L10a driven by the D1 or D2 dopamine receptor (D1R, D2R) promoter, respectively. Fluorescence in nucleoli was used to sort nuclei from D1R- or D2R-expressing neurons and to quantify by flow cytometry the cocaine-induced changes in histone acetylation and methylation specifically in these two types of nuclei. The two populations of medium-sized spiny neurons displayed different patterns of histone modifications 15 min or 24 h after a single injection of cocaine or 24 h after seven daily injections. In particular, acetylation of histone 3 on Lys 14 and of histone 4 on Lys 5 and 12, and methylation of histone 3 on Lys 9 exhibited distinct and persistent changes in the two cell types. Our data provide insights into the differential epigenetic responses to cocaine in D1R- and D2R-positive neurons and their potential regulation, which may participate in the persistent effects of cocaine in these neurons. The method described should have general utility for studying nuclear modifications in different types of neuronal or nonneuronal cell types.


Assuntos
Cocaína/farmacologia , Corpo Estriado/citologia , Histonas/efeitos dos fármacos , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Acetilação , Análise de Variância , Animais , Cromossomos Artificiais Bacterianos , Citometria de Fluxo , Imunofluorescência , Proteínas de Fluorescência Verde/metabolismo , Histonas/fisiologia , Immunoblotting , Metilação , Camundongos , Camundongos Transgênicos , Processamento de Proteína Pós-Traducional/fisiologia , Fatores de Tempo
14.
J Neurochem ; 132(6): 677-86, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25639954

RESUMO

Metabotropic glutamate receptor 5 (mGluR5) regulates excitatory post-synaptic signaling in the central nervous system (CNS) and is implicated in various CNS disorders. Protein kinase A (PKA) signaling is known to play a critical role in neuropsychiatric disorders such as Parkinson's disease, schizophrenia, and addiction. Dopamine signaling is known to modulate the properties of mGluR5 in a cAMP- and PKA-dependent manner, suggesting that mGluR5 may be a direct target for PKA. Our study identifies mGluR5 at Ser870 as a direct substrate for PKA phosphorylation and demonstrates that this phosphorylation plays a critical role in the PKA-mediated modulation of mGluR5 functions such as extracellular signal-regulated kinase phosphorylation and intracellular Ca(2+) oscillations. The identification of the molecular mechanism by which PKA signaling modulates mGluR5-mediated cellular responses contributes to the understanding of the interaction between dopaminergic and glutamatergic neuronal signaling. We identified serine residue 870 (S870) in metabotropic glutamate receptor 5 (mGluR5) as a direct substrate for protein kinase A (PKA). The phosphorylation of this site regulates the ability of mGluR5 to induce extracellular signal-regulated kinase (ERK) phosphorylation and intracellular Ca(2+) oscillations. This study provides a direct molecular mechanism by which PKA signaling interacts with glutamate neurotransmission.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptor de Glutamato Metabotrópico 5/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Fosforilação/fisiologia
15.
Nat Commun ; 15(1): 4163, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755145

RESUMO

TAR DNA-binding protein 43 (TDP-43) proteinopathy in brain cells is the hallmark of amyotrophic lateral sclerosis (ALS) but its cause remains elusive. Asparaginase-like-1 protein (ASRGL1) cleaves isoaspartates, which alter protein folding and susceptibility to proteolysis. ASRGL1 gene harbors a copy of the human endogenous retrovirus HML-2, whose overexpression contributes to ALS pathogenesis. Here we show that ASRGL1 expression was diminished in ALS brain samples by RNA sequencing, immunohistochemistry, and western blotting. TDP-43 and ASRGL1 colocalized in neurons but, in the absence of ASRGL1, TDP-43 aggregated in the cytoplasm. TDP-43 was found to be prone to isoaspartate formation and a substrate for ASRGL1. ASRGL1 silencing triggered accumulation of misfolded, fragmented, phosphorylated and mislocalized TDP-43 in cultured neurons and motor cortex of female mice. Overexpression of ASRGL1 restored neuronal viability. Overexpression of HML-2 led to ASRGL1 silencing. Loss of ASRGL1 leading to TDP-43 aggregation may be a critical mechanism in ALS pathophysiology.


Assuntos
Esclerose Lateral Amiotrófica , Asparaginase , Proteínas de Ligação a DNA , Neurônios , Proteinopatias TDP-43 , Animais , Feminino , Humanos , Masculino , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Asparaginase/genética , Asparaginase/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Córtex Motor/metabolismo , Córtex Motor/patologia , Neurônios/metabolismo , Neurônios/patologia , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologia , Proteinopatias TDP-43/genética , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo
16.
Res Sq ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39011113

RESUMO

Cerebral small vessel disease (cSVD) is a leading cause of stroke and dementia with no specific mechanism-based treatment. We used Mendelian randomization to combine a unique cerebrospinal fluid (CSF) and plasma pQTL resource with the latest European-ancestry GWAS of MRI-markers of cSVD (white matter hyperintensities, perivascular spaces). We describe a new biological fingerprint of 49 protein-cSVD associations, predominantly in the CSF. We implemented a multipronged follow-up, across fluids, platforms, and ancestries (Europeans and East-Asian), including testing associations of direct plasma protein measurements with MRI-cSVD. We highlight 16 proteins robustly associated in both CSF and plasma, with 24/4 proteins identified in CSF/plasma only. cSVD-proteins were enriched in extracellular matrix and immune response pathways, and in genes enriched in microglia and specific microglial states (integration with single-nucleus RNA sequencing). Immune-related proteins were associated with MRI-cSVD already at age twenty. Half of cSVD-proteins were associated with stroke, dementia, or both, and seven cSVD-proteins are targets for known drugs (used for other indications in directions compatible with beneficial therapeutic effects. This first cSVD proteogenomic signature opens new avenues for biomarker and therapeutic developments.

17.
J Neurosci ; 32(27): 9124-32, 2012 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-22764222

RESUMO

Mice carrying bacterial artificial chromosome (BAC) transgenes have become important tools for neuroscientists, providing a powerful means of dissecting complex neural circuits in the brain. Recently, it was reported that one popular line of these mice--mice possessing a BAC transgene with a D(2) dopamine receptor (Drd2) promoter construct coupled to an enhanced green fluorescent protein (eGFP) reporter--had abnormal striatal gene expression, physiology, and motor behavior. Unlike most of the work using BAC mice, this interesting study relied upon mice backcrossed on the outbred Swiss Webster (SW) strain that were homozygous for the Drd2-eGFP BAC transgene. The experiments reported here were conducted to determine whether mouse strain or zygosity was a factor in the reported abnormalities. As reported, SW mice were very sensitive to transgene expression. However, in more commonly used inbred strains of mice (C57BL/6, FVB/N) that were hemizygous for the transgene, the Drd2-eGFP BAC transgene did not alter striatal gene expression, physiology, or motor behavior. Thus, the use of inbred strains of mice that are hemizygous for the Drd2 BAC transgene provides a reliable tool for studying basal ganglia function.


Assuntos
Corpo Estriado/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Camundongos Transgênicos/genética , Fenótipo , Receptores de Dopamina D2/genética , Animais , Animais não Endogâmicos , Doenças dos Gânglios da Base/genética , Doenças dos Gânglios da Base/metabolismo , Doenças dos Gânglios da Base/fisiopatologia , Comportamento Animal/fisiologia , Cromossomos Artificiais Bacterianos/genética , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Feminino , Hemizigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Atividade Motora/genética , Especificidade da Espécie
18.
Nat Commun ; 14(1): 282, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650127

RESUMO

Striatal projection neurons (SPNs), which progressively degenerate in human patients with Huntington's disease (HD), are classified along two axes: the canonical direct-indirect pathway division and the striosome-matrix compartmentation. It is well established that the indirect-pathway SPNs are susceptible to neurodegeneration and transcriptomic disturbances, but less is known about how the striosome-matrix axis is compromised in HD in relation to the canonical axis. Here we show, using single-nucleus RNA-sequencing data from male Grade 1 HD patient post-mortem brain samples and male zQ175 and R6/2 mouse models, that the two axes are multiplexed and differentially compromised in HD. In human HD, striosomal indirect-pathway SPNs are the most depleted SPN population. In mouse HD models, the transcriptomic distinctiveness of striosome-matrix SPNs is diminished more than that of direct-indirect pathway SPNs. Furthermore, the loss of striosome-matrix distinction is more prominent within indirect-pathway SPNs. These results open the possibility that the canonical direct-indirect pathway and striosome-matrix compartments are differentially compromised in late and early stages of disease progression, respectively, differentially contributing to the symptoms, thus calling for distinct therapeutic strategies.


Assuntos
Doença de Huntington , Camundongos , Animais , Humanos , Masculino , Doença de Huntington/genética , Doença de Huntington/metabolismo , Roedores , Corpo Estriado/metabolismo , Neurônios/metabolismo , Gânglios da Base/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
19.
Nat Commun ; 14(1): 3720, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349305

RESUMO

Transmission and secretion of signals via the choroid plexus (ChP) brain barrier can modulate brain states via regulation of cerebrospinal fluid (CSF) composition. Here, we developed a platform to analyze diurnal variations in male mouse ChP and CSF. Ribosome profiling of ChP epithelial cells revealed diurnal translatome differences in metabolic machinery, secreted proteins, and barrier components. Using ChP and CSF metabolomics and blood-CSF barrier analyses, we observed diurnal changes in metabolites and cellular junctions. We then focused on transthyretin (TTR), a diurnally regulated thyroid hormone chaperone secreted by the ChP. Diurnal variation in ChP TTR depended on Bmal1 clock gene expression. We achieved real-time tracking of CSF-TTR in awake TtrmNeonGreen mice via multi-day intracerebroventricular fiber photometry. Diurnal changes in ChP and CSF TTR levels correlated with CSF thyroid hormone levels. These datasets highlight an integrated platform for investigating diurnal control of brain states by the ChP and CSF.


Assuntos
Barreira Hematoencefálica , Plexo Corióideo , Camundongos , Masculino , Animais , Plexo Corióideo/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Hormônios Tireóideos/metabolismo , Pré-Albumina/genética , Pré-Albumina/metabolismo , Transporte Biológico
20.
Neuron ; 110(7): 1087-1089, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35390285

RESUMO

In this issue of Neuron, Gu et al. (2022) describe a new BAC mouse model that faithfully recapitulates various aspects of Huntington's disease pathobiology and reveals important insights into the relative toxicities of mHTT-derived products.


Assuntos
Doença de Huntington , Animais , Modelos Animais de Doenças , Proteína Huntingtina/genética , Doença de Huntington/genética , Camundongos , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA