Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 594(7861): 66-70, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079137

RESUMO

The concentration of dissolved oxygen in aquatic systems helps to regulate biodiversity1,2, nutrient biogeochemistry3, greenhouse gas emissions4, and the quality of drinking water5. The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity6,7, but little is known about the changes in dissolved oxygen concentrations in lakes. Although the solubility of dissolved oxygen decreases with increasing water temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification8,9 or oxygen may increase as a result of enhanced primary production10. Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although dissolved oxygen in surface waters increased in a subset of highly productive warming lakes, probably owing to increasing production of phytoplankton. By contrast, the decline in deep waters is associated with stronger thermal stratification and loss of water clarity, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Declines in dissolved oxygen in freshwater are 2.75 to 9.3 times greater than observed in the world's oceans6,7 and could threaten essential lake ecosystem services2,3,5,11.


Assuntos
Lagos/química , Oxigênio/análise , Oxigênio/metabolismo , Temperatura , Animais , Mudança Climática , Ecossistema , Oceanos e Mares , Oxigênio/química , Fitoplâncton/metabolismo , Solubilidade , Fatores de Tempo
2.
J Environ Manage ; 199: 172-180, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28531797

RESUMO

Bioassessment methods are critically needed to evaluate and monitor lake ecological condition. Aquatic macrophytes are good candidate indicators, but few lake bioassessment methods developed in North America use them. The few macrophyte bioassessment methods that do exist suffer from problems related to subjectivity and discernibility along disturbance gradients. We developed and tested a bioassessment approach for 462 north temperate lakes. The approach links macrophyte abundance to lake ecological condition via estimates of taxon-specific abundance-weighted tolerance to anthropogenic disturbance. Using variables related to eutrophication, urban development and agriculture, we calculated abundance-weighted tolerance ranges for 59 macrophyte taxa and clustered them according to their tolerance to anthropogenic disturbance. We also created a composite index of anthropogenic disturbance using 20 variables related to population density, land cover and water chemistry. We used a statistical approach to set ecological condition thresholds based on the observed abundance of sensitive, moderately tolerant and tolerant taxa in each lake. The resulting lake condition categories were usually stable across multiple survey events and largely agreed with condition rankings assigned using expert judgment. We suggest using this macrophyte bioassessment method for federal water quality reports, restoration and management on north temperate lakes.


Assuntos
Eutrofização , Lagos , Ecologia , América do Norte , Qualidade da Água
3.
Proc Biol Sci ; 282(1799): 20142254, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25473013

RESUMO

The temperature dependence of predation rates is a key issue for understanding and predicting the responses of ecosystems to climate change. Using a simple mechanistic model, we demonstrate that differences in the relative performances of predator and prey can cause strong threshold effects in the temperature dependence of attack rates. Empirical data on the attack rate of northern pike (Esox lucius) feeding on brown trout (Salmo trutta) confirm this result. Attack rates fell sharply below a threshold temperature of +11°C, which corresponded to a shift in relative performance of pike and brown trout with respect to maximum attack and escape swimming speeds. The average attack speed of pike was an order of magnitude lower than the escape speed of brown trout at 5°C, but approximately equal at temperatures above 11°C. Thresholds in the temperature dependence of ecological rates can create tipping points in the responses of ecosystems to increasing temperatures. Thus, identifying thresholds is crucial when predicting future effects of climate warming.


Assuntos
Esocidae/fisiologia , Comportamento Predatório , Temperatura , Truta/fisiologia , Animais , Comportamento Animal , Mudança Climática , Ecossistema , Dinâmica Populacional , Estações do Ano , Natação
4.
Ecology ; 96(11): 2870-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27070007

RESUMO

Terrestrial ecosystems export large amounts of organic carbon (t-OC) but the net effect of this OC on the productivity of recipient aquatic ecosystems is largely unknown. In this study of boreal lakes, we show that the relative contribution of t-OC to individual top consumer (fish) biomass production, and to most of their potential prey organisms, increased with the concentration of dissolved organic carbon (DOC; dominated by t-OC sources) in water. However, the biomass and production of top consumers decreased with increasing concentration of DOC, despite their substantial use (up to 60%) of t-OC. Thus, the results suggest that although t-OC supports individual consumer growth in lakes to a large extent, t-OC input suppresses rather than subsidizes population biomass production.


Assuntos
Biomassa , Ecossistema , Peixes/fisiologia , Lagos , Zooplâncton/fisiologia , Animais , Carbono/química , Carbono/metabolismo
5.
Proc Biol Sci ; 281(1775): 20132641, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24307673

RESUMO

A major area of current research is to understand how climate change will impact species interactions and ultimately biodiversity. A variety of environmental conditions are rapidly changing owing to climate warming, and these conditions often affect both the strength and outcome of species interactions. We used fish distributions and replicated fish introductions to investigate environmental conditions influencing the coexistence of two fishes in Swedish lakes: brown trout (Salmo trutta) and pike (Esox lucius). A logistic regression model of brown trout and pike coexistence showed that these species coexist in large lakes (more than 4.5 km(2)), but not in small, warm lakes (annual air temperature more than 0.9-1.5°C). We then explored how climate change will alter coexistence by substituting climate scenarios for 2091-2100 into our model. The model predicts that brown trout will be extirpated from approximately half of the lakes where they presently coexist with pike and from nearly all 9100 lakes where pike are predicted to invade. Context dependency was critical for understanding pike-brown trout interactions, and, given the widespread occurrence of context-dependent species interactions, this aspect will probably be critical for accurately predicting climate impacts on biodiversity.


Assuntos
Comportamento Animal , Esocidae/fisiologia , Temperatura , Truta/fisiologia , Animais , Biodiversidade , Mudança Climática , Modelos Teóricos
6.
Ambio ; 41 Suppl 3: 303-12, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22864703

RESUMO

Novel communities will be formed as species with a variety of dispersal abilities and environmental tolerances respond individually to climate change. Thus, models projecting future species distributions must account for species interactions and differential dispersal abilities. We developed a species distribution model for Arctic char Salvelinus alpinus, a freshwater fish that is sensitive both to warm temperatures and to species interactions. A logistic regression model using lake area, mean annual air temperature (1961-1990), pike Esox lucius and brown trout Salmo trutta occurrence correctly classified 95 % of 467 Swedish lakes. We predicted that Arctic char will lose 73 % of its range in Sweden by 2100. Predicted extinctions could be attributed both to simulated temperature increases and to projected pike invasions. The Swedish mountains will continue to provide refugia for Arctic char in the future and should be the focus of conservation efforts for this highly valued fish.


Assuntos
Mudança Climática , Ecossistema , Lagos , Temperatura , Truta/fisiologia , Animais , Regiões Árticas , Demografia , Modelos Logísticos , Modelos Biológicos , Suécia , Fatores de Tempo
7.
Ecol Lett ; 14(9): 914-21, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21752171

RESUMO

The Arrhenius equation has emerged as the favoured model for describing the temperature dependence of consumption in predator-prey models. To examine the relevance of this equation, we undertook a meta-analysis of published relationships between functional response parameters and temperature. We show that, when plotted in lin-log space, temperature dependence of both attack rate and maximal ingestion rate exhibits a hump-shaped relationship and not a linear one as predicted by the Arrhenius equation. The relationship remains significantly downward concave even when data from temperatures above the peak of the hump are discarded. Temperature dependence is stronger for attack rate than for maximal ingestion rate, but the thermal optima are not different. We conclude that the use of the Arrhenius equation to describe consumption in predator-prey models requires the assumption that temperatures above thermal optima are unimportant for population and community dynamics, an assumption that is untenable given the available data.


Assuntos
Artrópodes/fisiologia , Peixes/fisiologia , Comportamento Predatório/fisiologia , Temperatura , Animais , Cadeia Alimentar , Modelos Biológicos , Dinâmica Populacional , Especificidade da Espécie
8.
Evol Lett ; 4(3): 243-256, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32547784

RESUMO

Lake-dwelling fish that form species pairs/flocks characterized by body size divergence are important model systems for speciation research. Although several sources of divergent selection have been identified in these systems, their importance for driving the speciation process remains elusive. A major problem is that in retrospect, we cannot distinguish selection pressures that initiated divergence from those acting later in the process. To address this issue, we studied the initial stages of speciation in European whitefish (Coregonus lavaretus) using data from 358 populations of varying age (26-10,000 years). We find that whitefish speciation is driven by a large-growing predator, the northern pike (Esox lucius). Pike initiates divergence by causing a largely plastic differentiation into benthic giants and pelagic dwarfs: ecotypes that will subsequently develop partial reproductive isolation and heritable differences in gill raker number. Using an eco-evolutionary model, we demonstrate how pike's habitat specificity and large gape size are critical for imposing a between-habitat trade-off, causing prey to mature in a safer place or at a safer size. Thereby, we propose a novel mechanism for how predators may cause dwarf/giant speciation in lake-dwelling fish species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA