Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Neuroimage ; 269: 119903, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36708974

RESUMO

Whereas neural representations of spatial information are commonly studied in vision, olfactory stimuli might also be able to create such representations via the trigeminal system. We explored in two independent multi-method electroencephalography-functional near-infrared spectroscopy (EEG+fNIRS) experiments (n1=18, n2=14) if monorhinal odor stimuli can evoke spatial representations in the brain. We tested whether this representation depends on trigeminal properties of the stimulus, and if the retention in short-term memory follows the "sensorimotor recruitment theory", using multivariate representational similarity analysis (RSA). We demonstrate that the delta frequency band up to 5 Hz across the scull entail spatial information of which nostril has been stimulated. Delta frequencies were localized in a network involving primary and secondary olfactory, motor-sensory and occipital regions. RSA on fNIRS data showed that monorhinal stimulations evoke neuronal representations in motor-sensory regions and that this representation is kept stable beyond the time of perception. These effects were no longer valid when the odor stimulus did not sufficiently stimulate the trigeminal nerve as well. Our results are first evidence that the trigeminal system can create spatial representations of bimodal odors in the brain and that these representations follow similar principles as the other sensory systems.


Assuntos
Odorantes , Olfato , Humanos , Olfato/fisiologia , Eletroencefalografia , Encéfalo , Nervo Trigêmeo/fisiologia
2.
Memory ; 31(10): 1306-1319, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37743561

RESUMO

It is widely assumed that autobiographical memory relies on an integration of episodic memory with the self-model. We hypothesise that self-memory integration depends critically on self-congruence. More specifically, self-incongruent experiences such as those that elicit shame or guilt may be more difficult to integrate. Self-incongruence may affect both the semantic reports of memories and their phenomenological characteristics, in particular their visual perspective (1PP or 3PP, i.e., field or observer perspective), their affective valence, and their perceived centrality. Diary based memories were assigned to 4 categories (shame, guilt, negative, neutral) and were rated for the different phenomenological dimensions. We used a deep neural network, univariate and multilevel models to assess differences and relationships between different variables. We found that memories that elicited shame (but not guilt) showed more pronounced 3PP as compared to other experiences. Shameful episodes also elicited the most pronounced negative affect. A multilevel analysis revealed that the amount of shame that an episode elicited, and its semantic similarity with shame episodes, predicted higher 3PP, while affective valence did not. Our results show that self-incongruence affects memories both at the level of their semantic reports and their phenomenology, and thus contributes to a mechanistic understanding of self-memory integration.


Assuntos
Memória Episódica , Humanos , Emoções , Rememoração Mental
3.
Proc Natl Acad Sci U S A ; 117(51): 32329-32339, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288707

RESUMO

Visual short-term memory (VSTM) enables humans to form a stable and coherent representation of the external world. However, the nature and temporal dynamics of the neural representations in VSTM that support this stability are barely understood. Here we combined human intracranial electroencephalography (iEEG) recordings with analyses using deep neural networks and semantic models to probe the representational format and temporal dynamics of information in VSTM. We found clear evidence that VSTM maintenance occurred in two distinct representational formats which originated from different encoding periods. The first format derived from an early encoding period (250 to 770 ms) corresponded to higher-order visual representations. The second format originated from a late encoding period (1,000 to 1,980 ms) and contained abstract semantic representations. These representational formats were overall stable during maintenance, with no consistent transformation across time. Nevertheless, maintenance of both representational formats showed substantial arrhythmic fluctuations, i.e., waxing and waning in irregular intervals. The increases of the maintained representational formats were specific to the phases of hippocampal low-frequency activity. Our results demonstrate that human VSTM simultaneously maintains representations at different levels of processing, from higher-order visual information to abstract semantic representations, which are stably maintained via coupling to hippocampal low-frequency activity.


Assuntos
Hipocampo/fisiologia , Memória de Curto Prazo/fisiologia , Percepção Visual/fisiologia , Adulto , Eletroencefalografia/métodos , Eletroencefalografia/estatística & dados numéricos , Epilepsia , Feminino , Humanos , Masculino , Redes Neurais de Computação , Experimentação Humana não Terapêutica
4.
Neuroimage ; 109: 109-17, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25595506

RESUMO

BACKGROUND: Vicarious embarrassment (VE) is an emotion triggered by the observation of others' pratfalls or social norm violations. Several explanatory approaches have been suggested to explain the source of this phenomenon, including perspective taking abilities or ingroup identification. Knowledge about its biological bases, however, is scarce. To gain a better understanding, the present study investigated neural activation patterns in response to video clips from reality TV shows. Reality TV is well known for presenting social norm violations, flaws and pratfalls of its protagonists in real life situations thereby qualifying as an ecological valid trigger for VE. METHODS: N = 60 healthy participants viewed stand stills from previously watched video clips taken from German reality TV-shows while undergoing functional magnetic resonance imaging. The clips were preselected for high versus low VE content in a pilot study. Besides the investigation of differences in brain activation elicited by VE versus control stand stills (blocked design contrast), we performed additional exploratory functional connectivity analyses (psychophysiological interaction; PPI) to detect VE related brain networks. RESULTS: Compared to the low VE condition, participants in the high VE condition showed a higher activation in the middle temporal gyrus, the supramarginal gyrus, the right inferior frontal gyrus and the gyrus rectus. Functional connectivity analyses confirmed increased connectivity of these regions with the anterior cingulate in the VE condition. Moreover, self-ratings of VE and brain activity were correlated positively. CONCLUSION: Reality TV formats with high VE content activate brain regions associated with Theory of Mind, but also with empathic concern and social identity. Therefore, our results support the idea that the ability to put oneself in other person's shoes is a major prerequisite for VE.


Assuntos
Encéfalo/fisiologia , Empatia/fisiologia , Televisão , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
5.
Brain Struct Funct ; 229(3): 513-529, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37022435

RESUMO

Neural representations are internal brain states that constitute the brain's model of the external world or some of its features. In the presence of sensory input, a representation may reflect various properties of this input. When perceptual information is no longer available, the brain can still activate representations of previously experienced episodes due to the formation of memory traces. In this review, we aim at characterizing the nature of neural memory representations and how they can be assessed with cognitive neuroscience methods, mainly focusing on neuroimaging. We discuss how multivariate analysis techniques such as representational similarity analysis (RSA) and deep neural networks (DNNs) can be leveraged to gain insights into the structure of neural representations and their different representational formats. We provide several examples of recent studies which demonstrate that we are able to not only measure memory representations using RSA but are also able to investigate their multiple formats using DNNs. We demonstrate that in addition to slow generalization during consolidation, memory representations are subject to semantization already during short-term memory, by revealing a shift from visual to semantic format. In addition to perceptual and conceptual formats, we describe the impact of affective evaluations as an additional dimension of episodic memories. Overall, these studies illustrate how the analysis of neural representations may help us gain a deeper understanding of the nature of human memory.


Assuntos
Encéfalo , Memória Episódica , Humanos , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Semântica , Imageamento por Ressonância Magnética
6.
iScience ; 25(11): 105391, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36345329

RESUMO

The continuous flow of experience that characterizes real-life events is not recorded as such in episodic memory but is condensed as a succession of event segments separated by temporal discontinuities. To unravel the neural basis of this representational structure, we recorded real-life events using wearable camera technology and used fMRI to investigate brain activity during their temporal unfolding in memory. We found that, compared to the representation of static scenes in memory, dynamically unfolding memory representations were associated with greater activation of the posterior medial episodic network. Strikingly, by analyzing the autocorrelation of brain activity patterns at successive time points throughout the retrieval period, we found that this network showed higher temporal dynamics when recalling events that included a higher density of event segments. These results reveal the key role of the posterior medial network in representing the dynamic unfolding of the event segments that constitute real-world memories.

7.
Curr Biol ; 31(23): 5204-5213.e8, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34653359

RESUMO

Stress influences episodic memory formation via noradrenaline and glucocorticoid effects on amygdala and hippocampus. A common finding is the improvement of memory for central aspects of a stressful episode. This is putatively related to changes in the neural representations of specific experiences, i.e., their memory traces. Here we show that the memory improvement for objects that were encountered in a stressful episode relates to differences in the neural representations of these objects in the amygdala. Using functional magnetic resonance imaging, we found that stress specifically altered the representations of central objects: compared to control objects, they became more similar to one another and more distinct from objects that were not part of this episode. Furthermore, higher similarity of central objects to the main stressor-the faces of the stress-inducing committee members-predicted better memory. This suggests that the central objects were closely integrated into a stressor-centered memory representation. Our findings provide mechanistic insights into how stress shapes the memory trace and have profound implications for neurocognitive models of stressful and emotional memory.


Assuntos
Emoções , Memória Episódica , Tonsila do Cerebelo , Hipocampo , Imageamento por Ressonância Magnética
8.
Front Neurosci ; 14: 620723, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519370

RESUMO

The neuronal cascade related to the perception of either purely olfactory or trigeminal airborne chemicals has been investigated using electroencephalography (EEG) microstate analyses and source localization. However, most airborne chemicals are bimodal in nature, encompassing both properties. Moreover, there is an ongoing debate regarding whether there is one dominant nostril, and this could be investigated using these multichannel EEG methods. In this study, 18 right-handed, healthy participants (13 females) were monorhinally stimulated using an olfactometer with the bimodal component acetic acid during continuous EEG recording. Participants indicated the side of stimulation, the confidence in their decision, and rated the strength of the evoked perception. EEG microstate clustering determined four distinct maps and successive backfitting procedures, and source estimations revealed a network that evolved from visual-spatial processing areas to brain areas related to basic olfactory and trigeminal sensations (e.g., thalamus, cingulate cortex, insula, parahippocampal, and pre-/post-central gyri) and resulted in activation of areas involved in multisensory integration (e.g., frontal-temporal areas). Right-nostril stimulation was associated with faster microstate transition and longer involvement of the superior temporal gyrus, which was previously linked to chemical localization and provides evidence for a potential nostril dominance. The results describe for the first time the processing cascade of bimodal odor perception using microstate analyses and demonstrate its feasibility to further investigate potential nostril dominance.

9.
Front Psychol ; 11: 933, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477224

RESUMO

Categorization learning is a fundamental and complex cognitive ability. The present EEG study examined how much action video gamers differ from non-gamers in the usage of visual exploration and attention driven perceptual analyses during a categorization learning task. Seventeen healthy right-handed non-gamers and 16 healthy right-handed action video gamers performed a visual categorization task with 14 ring stimuli, which were divided into two categories. All stimuli had the same structure but differed with respect to their color combinations and were forming two categories including a prototype, five typical stimuli and one exception. The exception shared most similarities with the prototype of the opposite group. Prototypes and typical stimuli were correctly categorized at an early stage of the experiment, whereas the successful categorization of exceptions occurred later. The behavioral data yield evidence that action video gamers perform correct categorizations of exceptions earlier than non-gamers. Additionally, groups differed with respect to differential expressions of the attention related P150 ERP component (early perceptual analysis) and the N170 ERP component, which reflected differential processing demands for the stimulus material. In comparison to non-gamers, the analyses of the eye movements yield for action video gamers different, more central fixations possibly indicating covert peripheral processing. For both groups fixations as well as saccades decrease and in the case of exceptions, one of the two segments that are decisive for correct categorization shows higher fixation rates at the end of the experiment. These findings indicate for both groups a learning process regarding the stimulus material. Regarding the group differences, we interpret the results to indicate that action video gamers show a different stimulus exploration, use an enhanced early perceptual analysis of the stimulus material and therefore may detect changes in objects faster and learned the belonging of the stimuli to their categories in an earlier trial phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA