Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 173(2): 321-337.e10, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625050

RESUMO

Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFß signaling, p53 and ß-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.


Assuntos
Bases de Dados Genéticas , Neoplasias/patologia , Transdução de Sinais/genética , Genes Neoplásicos , Humanos , Neoplasias/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
2.
Mol Cell Proteomics ; 18(9): 1893-1898, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31308250

RESUMO

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) has produced extensive mass spectrometry-based proteomics data for selected breast, colon, and ovarian tumors from The Cancer Genome Atlas (TCGA). We have incorporated the CPTAC proteomics data into the cBioPortal to support easy exploration and integrative analysis of these proteomic datasets in the context of the clinical and genomics data from the same tumors. cBioPortal is an open source platform for exploring, visualizing, and analyzing multidimensional cancer genomics and clinical data. The public instance of the cBioPortal (http://cbioportal.org/) hosts more than 200 cancer genomics studies, including all of the data from TCGA. Its biologist-friendly interface provides many rich analysis features, including a graphical summary of gene-level data across multiple platforms, correlation analysis between genes or other data types, survival analysis, and per-patient data visualization. Here, we present the integration of the CPTAC mass spectrometry-based proteomics data into the cBioPortal, consisting of 77 breast, 95 colorectal, and 174 ovarian tumors that already have been profiled by TCGA for mutations, copy number alterations, gene expression, and DNA methylation. As a result, the CPTAC data can now be easily explored and analyzed in the cBioPortal in the context of clinical and genomics data. By integrating CPTAC data into cBioPortal, limitations of TCGA proteomics array data can be overcome while also providing a user-friendly web interface, a web API, and an R client to query the mass spectrometry data together with genomic, epigenomic, and clinical data.


Assuntos
Genômica , Armazenamento e Recuperação da Informação/métodos , Neoplasias , Proteômica , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Gráficos por Computador , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Internet , Estimativa de Kaplan-Meier , Masculino , Espectrometria de Massas , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/mortalidade , Interface Usuário-Computador
3.
Gastroenterology ; 151(2): 278-287.e6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27063727

RESUMO

BACKGROUND & AIMS: Patients with inflammatory bowel diseases, such as Crohn's disease (CD) and ulcerative colitis (UC), are at increased risk for small bowel or colorectal cancers (colitis-associated cancers [CACs]). We compared the spectrum of genomic alterations in CACs with those of sporadic colorectal cancers (CRCs) and investigated differences between CACs from patients with CD vs UC. METHODS: We studied tumor tissues from patients with CACs treated at Memorial Sloan Kettering Cancer Center or Weill Cornell Medical College from 2003 through 2015. We performed hybrid capture-based next-generation sequencing analysis of >300 cancer-related genes to comprehensively characterize genomic alterations. RESULTS: We performed genomic analyses of 47 CACs (from 29 patients with UC and 18 with CD; 43 primary tumors and 4 metastases). Primary tumors developed in the ileum (n = 2), right colon (n = 18), left colon (n = 6), and rectosigmoid or rectum (n = 21). We found genomic alterations in TP53, IDH1, and MYC to be significantly more frequent, and mutations in APC to be significantly less frequent, than those reported in sporadic CRCs by The Cancer Genome Atlas or Foundation Medicine. We identified genomic alterations that might be targeted by a therapeutic agent in 17 of 47 (36%) CACs. These included the mutation encoding IDH1 R132; amplification of FGFR1, FGFR2, and ERBB2; and mutations encoding BRAF V600E and an EML4-ALK fusion protein. Alterations in IDH1 and APC were significantly more common in CACs from patients with CD than UC. CONCLUSIONS: In an analysis of CACs from 47 patients, we found significant differences in the spectrum of genomic alterations in CACs compared with sporadic CRCs. We observed a high frequency of IDH1 R132 mutations in patients with CD but not UC, as well as a high frequency of MYC amplification in CACs. Many genetic alterations observed in CACs could serve as therapeutic targets.


Assuntos
Colite Ulcerativa/complicações , Neoplasias Colorretais/genética , Hibridização Genômica Comparativa , Doença de Crohn/complicações , Adulto , Idoso , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Neoplasias Colorretais/patologia , Doença de Crohn/genética , Doença de Crohn/patologia , Feminino , Genes myc/genética , Genômica , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação , Adulto Jovem
4.
bioRxiv ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798199

RESUMO

While wastewater is understood to be a critically important reservoir of antimicrobial resistance due to the presence of multiple antibiotic residues from industrial and agricultural runoff, there is little known about the effects of antibiotic interactions in the wastewater on the development of resistance. We worked to fill this gap in quantitative understanding of antibiotic interaction in constant flow environments by experimentally monitoring E. coli populations under subinhibitory concentrations of combinations of antibiotics with synergistic, antagonistic, and additive interactions. We then used these results to expand our previously developed computational model to account for the complex effects of antibiotic interaction. We found that while E. coli populations grown in additively interacting antibiotic combinations grew predictably according to the previously developed model, those populations grown under synergistic and antagonistic antibiotic conditions exhibited significant differences from predicted behavior. E. coli populations grown in the condition with synergistically interacting antibiotics developed less resistance than predicted, indicating that synergistic antibiotics may have a suppressive effect on antimicrobial resistance development. Furthermore E. coli populations grown in the condition with antagonistically interacting antibiotics showed an antibiotic ratio-dependent development of resistance, suggesting that not only antibiotic interaction, but relative concentration is important in predicting resistance development. These results provide critical insight for quantitatively understanding the effects of antibiotic interactions in wastewater and provide a basis for future studies in modelling resistance in these environments. Importance: Antimicrobial resistance (AMR) is a growing global threat to public health expected to impact 10 million people by 2050, driving mortality rates globally and with a disproportionate effect on low- and middle-income countries. Communities in proximity to wastewater settings and environmentally contaminated surroundings are at particular risk due to resistance stemming from antibiotic residues from industrial and agricultural runoff. Currently, there is a limited quantitative and mechanistic understanding of the evolution of AMR in response to multiple interacting antibiotic residues in constant flow environments. Using an integrated computational and experimental methods, we find that interactions between antibiotic residues significantly affect the development of resistant bacterial populations.

5.
Sci Rep ; 13(1): 7801, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179426

RESUMO

While wastewater is understood to be a critically important reservoir of antimicrobial resistance due to the presence of multiple antibiotic residues from industrial and agricultural runoff, there is little known about the effects of antibiotic interactions in the wastewater on the development of resistance. We worked to fill this gap in quantitative understanding of antibiotic interaction in constant flow environments by experimentally monitoring E. coli populations under subinhibitory concentrations of combinations of antibiotics with synergistic, antagonistic, and additive interactions. We then used these results to expand our previously developed computational model to account for the effects of antibiotic interaction. We found that populations grown under synergistic and antagonistic antibiotic conditions exhibited significant differences from predicted behavior. E. coli populations grown with synergistically interacting antibiotics developed less resistance than predicted, indicating that synergistic antibiotics may have a suppressive effect on resistance development. Furthermore E. coli populations grown with antagonistically interacting antibiotics showed an antibiotic ratio-dependent development of resistance, suggesting that not only antibiotic interaction, but relative concentration is important in predicting resistance development. These results provide critical insight for quantitatively understanding the effects of antibiotic interactions in wastewater and provide a basis for future studies in modelling resistance in these environments.


Assuntos
Antibacterianos , Águas Residuárias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli , Farmacorresistência Bacteriana
6.
bioRxiv ; 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37034650

RESUMO

Experimental evolution using fast-growing unicellular organisms is a unique strategy for deciphering the principles and mechanisms underlying evolutionary processes as well as the architecture and wiring of basic biological functions. Over the past decade, this approach has benefited from the development of powerful systems for the continuous control of the growth of independently evolving cultures. While the first devices compatible with multiplexed experimental evolution remained challenging to implement and required constant user intervention, the recently-developed eVOLVER framework represents a fully automated closed-loop system for laboratory evolution assays. However, it remained difficult to maintain and compare parallel evolving cultures in tightly controlled environments over long periods of time using eVOLVER. Furthermore, a number of tools were lacking to cope with the various issues that inevitably occur when conducting such long-term assays. Here we present a significant upgrade of the eVOLVER framework, providing major modifications of the experimental methodology, hardware and software as well as a new standalone protocol. Altogether, these adaptations and improvements make the eVOLVER a versatile and unparalleled setup for long-term experimental evolution.

7.
Open Biol ; 13(7): 230118, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37491941

RESUMO

Experimental evolution using fast-growing unicellular organisms is a unique strategy for deciphering the principles and mechanisms underlying evolutionary processes as well as the architecture and wiring of basic biological functions. Over the past decade, this approach has benefited from the development of powerful systems for the continuous control of the growth of independently evolving cultures. While the first devices compatible with multiplexed experimental evolution remained challenging to implement and required constant user intervention, the recently developed eVOLVER framework represents a fully automated closed-loop system for laboratory evolution assays. However, it remained difficult to maintain and compare parallel evolving cultures in tightly controlled environments over long periods of time using eVOLVER. Furthermore, a number of tools were lacking to cope with the various issues that inevitably occur when conducting such long-term assays. Here we present a significant upgrade of the eVOLVER framework, providing major modifications of the experimental methodology, hardware and software as well as a new stand-alone protocol. Altogether, these adaptations and improvements make the eVOLVER a versatile and unparalleled set-up for long-term experimental evolution.


Assuntos
Evolução Biológica , Software
8.
Nat Biotechnol ; 41(1): 96-107, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36076084

RESUMO

Despite the availability of Cas9 variants with varied protospacer-adjacent motif (PAM) compatibilities, some genomic loci-especially those with pyrimidine-rich PAM sequences-remain inaccessible by high-activity Cas9 proteins. Moreover, broadening PAM sequence compatibility through engineering can increase off-target activity. With directed evolution, we generated four Cas9 variants that together enable targeting of most pyrimidine-rich PAM sequences in the human genome. Using phage-assisted noncontinuous evolution and eVOLVER-supported phage-assisted continuous evolution, we evolved Nme2Cas9, a compact Cas9 variant, into variants that recognize single-nucleotide pyrimidine-PAM sequences. We developed a general selection strategy that requires functional editing with fully specified target protospacers and PAMs. We applied this selection to evolve high-activity variants eNme2-T.1, eNme2-T.2, eNme2-C and eNme2-C.NR. Variants eNme2-T.1 and eNme2-T.2 offer access to N4TN PAM sequences with comparable editing efficiencies as existing variants, while eNme2-C and eNme2-C.NR offer less restrictive PAM requirements, comparable or higher activity in a variety of human cell types and lower off-target activity at N4CN PAM sequences.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Genoma Humano/genética , Pirimidinas
9.
JCO Clin Cancer Inform ; 6: e2100144, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35148171

RESUMO

PURPOSE: Interpretation of genomic variants in tumor samples still presents a challenge in research and the clinical setting. A major issue is that information for variant interpretation is fragmented across disparate databases, and aggregation of information from these requires building extensive infrastructure. To this end, we have developed Genome Nexus, a one-stop shop for variant annotation with a user-friendly interface for cancer researchers and clinicians. METHODS: Genome Nexus (1) aggregates variant information from sources that are relevant to cancer research and clinical applications, (2) allows high-performance programmatic access to the aggregated data via a unified application programming interface, (3) provides a reference page for individual cancer variants, (4) provides user-friendly tools for annotating variants in patients, and (5) is freely available under an open source license and can be installed in a private cloud or local environment and integrated with local institutional resources. RESULTS: Genome Nexus is available at https://www.genomenexus.org. It displays annotations from more than a dozen resources including those that provide variant effect information (variant effect predictor), protein sequence annotation (Uniprot, Pfam, and dbPTM), functional consequence prediction (Polyphen-2, Mutation Assessor, and SIFT), population prevalences (gnomAD, dbSNP, and ExAC), cancer population prevalences (Cancer hotspots and SignalDB), and clinical actionability (OncoKB, CIViC, and ClinVar). We describe several use cases that demonstrate the utility of Genome Nexus to clinicians, researchers, and bioinformaticians. We cover single-variant annotation, cohort analysis, and programmatic use of the application programming interface. Genome Nexus is unique in providing a user-friendly interface specific to cancer that allows high-performance annotation of any variant including unknown ones. CONCLUSION: Interpretation of cancer genomic variants is improved tremendously by having an integrated resource for annotations. Genome Nexus is freely available under an open source license.


Assuntos
Neoplasias , Software , Genômica , Humanos , Anotação de Sequência Molecular , Mutação , Neoplasias/genética
10.
mSystems ; 6(3): e0036021, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34100640

RESUMO

Although wastewater and sewage systems are known to be significant reservoirs of antibiotic-resistant bacterial populations and periodic outbreaks of drug-resistant infection, there is little quantitative understanding of the drivers behind resistant population growth in these settings. In order to fill this gap in quantitative understanding of the development of antibiotic-resistant infections in wastewater, we have developed a mathematical model synthesizing many known drivers of antibiotic resistance in these settings to help predict the growth of resistant populations in different environmental scenarios. A number of these drivers of drug-resistant infection outbreak, including antibiotic residue concentration, antibiotic interaction, chromosomal mutation, and horizontal gene transfer, have not previously been integrated into a single computational model. We validated the outputs of the model with quantitative studies conducted on the eVOLVER continuous culture platform. Our integrated model shows that low levels of antibiotic residues present in wastewater can lead to increased development of resistant populations and that the dominant mechanism of resistance acquisition in these populations is horizontal gene transfer rather than acquisition of chromosomal mutations. Additionally, we found that synergistic antibiotics at low concentrations lead to increased resistant population growth. These findings, consistent with recent experimental and field studies, provide new quantitative knowledge on the evolution of antibiotic-resistant bacterial reservoirs, and the model developed herein can be adapted for use as a prediction tool in public health policy making, particularly in low-income settings where water sanitation issues remain widespread and disease outbreaks continue to undermine public health efforts. IMPORTANCE The rate at which antimicrobial resistance (AMR) has developed and spread throughout the world has increased in recent years, and according to the Review on Antimicrobial Resistance in 2014, it is suggested that the current rate will lead to AMR-related deaths of several million people by 2050 (Review on Antimicrobial Resistance, Tackling a Crisis for the Health and Wealth of Nations, 2014). One major reservoir of resistant bacterial populations that has been linked to outbreaks of drug-resistant bacterial infections but is not well understood is in wastewater settings, where antibiotic pollution is often present. Using ordinary differential equations incorporating several known drivers of resistance in wastewater, we find that interactions between antibiotic residues and horizontal gene transfer significantly affect the growth of resistant bacterial reservoirs.

11.
J Vis Exp ; (147)2019 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-31157778

RESUMO

Continuous culture methods enable cells to be grown under quantitatively controlled environmental conditions, and are thus broadly useful for measuring fitness phenotypes and improving our understanding of how genotypes are shaped by selection. Extensive recent efforts to develop and apply niche continuous culture devices have revealed the benefits of conducting new forms of cell culture control. This includes defining custom selection pressures and increasing throughput for studies ranging from long-term experimental evolution to genome-wide library selections and synthetic gene circuit characterization. The eVOLVER platform was recently developed to meet this growing demand: a continuous culture platform with a high degree of scalability, flexibility, and automation. eVOLVER provides a single standardizing platform that can be (re)-configured and scaled with minimal effort to perform many different types of high-throughput or multi-dimensional growth selection experiments. Here, a protocol is presented to provide users of the eVOLVER framework a description for configuring the system to conduct a custom, large-scale continuous growth experiment. Specifically, the protocol guides users on how to program the system to multiplex two selection pressures - temperature and osmolarity - across many eVOLVER vials in order to quantify fitness landscapes of Saccharomyces cerevisiae mutants at fine resolution. We show how the device can be configured both programmatically, through its open-source web-based software, and physically, by arranging fluidic and hardware layouts. The process of physically setting up the device, programming the culture routine, monitoring and interacting with the experiment in real-time over the internet, sampling vials for subsequent offline analysis, and post experiment data analysis are detailed. This should serve as a starting point for researchers across diverse disciplines to apply eVOLVER in the design of their own complex and high-throughput cell growth experiments to study and manipulate biological systems.


Assuntos
Técnicas de Cultura/métodos , Saccharomyces cerevisiae/citologia , Software , Automação , Ciclo Celular , Proliferação de Células , Fenótipo , Saccharomyces cerevisiae/genética
12.
Cancer Discov ; 8(1): 49-58, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29122777

RESUMO

The incidence of esophagogastric cancer is rapidly rising, but only a minority of patients derive durable benefit from current therapies. Chemotherapy as well as anti-HER2 and PD-1 antibodies are standard treatments. To identify predictive biomarkers of drug sensitivity and mechanisms of resistance, we implemented prospective tumor sequencing of patients with metastatic esophagogastric cancer. There was no association between homologous recombination deficiency defects and response to platinum-based chemotherapy. Patients with microsatellite instability-high tumors were intrinsically resistant to chemotherapy but more likely to achieve durable responses to immunotherapy. The single Epstein-Barr virus-positive patient achieved a durable, complete response to immunotherapy. The level of ERBB2 amplification as determined by sequencing was predictive of trastuzumab benefit. Selection for a tumor subclone lacking ERBB2 amplification, deletion of ERBB2 exon 16, and comutations in the receptor tyrosine kinase, RAS, and PI3K pathways were associated with intrinsic and/or acquired trastuzumab resistance. Prospective genomic profiling can identify patients most likely to derive durable benefit to immunotherapy and trastuzumab and guide strategies to overcome drug resistance.Significance: Clinical application of multiplex sequencing can identify biomarkers of treatment response to contemporary systemic therapies in metastatic esophagogastric cancer. This large prospective analysis sheds light on the biological complexity and the dynamic nature of therapeutic resistance in metastatic esophagogastric cancers. Cancer Discov; 8(1); 49-58. ©2017 AACR.See related commentary by Sundar and Tan, p. 14See related article by Pectasides et al., p. 37This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Imunoterapia/métodos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Neoplasias Esofágicas/patologia , Humanos , Estudos Prospectivos , Neoplasias Gástricas/patologia
14.
JCO Precis Oncol ; 20172017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28825054

RESUMO

PURPOSE: A long natural history and a predominant osseous pattern of metastatic spread are impediments to the adoption of precision medicine in patients with prostate cancer. To establish the feasibility of clinical genomic profiling in the disease, we performed targeted deep sequencing of tumor and normal DNA from patients with locoregional, metastatic non-castrate, and metastatic castration-resistant prostate cancer (CRPC). METHODS: Patients consented to genomic analysis of their tumor and germline DNA. A hybridization capture-based clinical assay was employed to identify single nucleotide variations, small insertions and deletions, copy number alterations and structural rearrangements in over 300 cancer-related genes in tumors and matched normal blood. RESULTS: We successfully sequenced 504 tumors from 451 patients with prostate cancer. Potentially actionable alterations were identified in DNA damage repair (DDR), PI3K, and MAP kinase pathways. 27% of patients harbored a germline or a somatic alteration in a DDR gene that may predict for response to PARP inhibition. Profiling of matched tumors from individual patients revealed that somatic TP53 and BRCA2 alterations arose early in tumors from patients who eventually developed metastatic disease. In contrast, comparative analysis across disease states revealed that APC alterations were enriched in metastatic tumors, while ATM alterations were specifically enriched in CRPC. CONCLUSION: Through genomic profiling of prostate tumors representing the disease clinical spectrum, we identified a high frequency of potentially actionable alterations and possible drivers of disease initiation, metastasis and castration-resistance. Our findings support the routine use of tumor and germline DNA profiling for patients with advanced prostate cancer, for the purpose of guiding enrollment in targeted clinical trials and counseling families at increased risk of malignancy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA