RESUMO
High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. Here we show that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1ß release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in male mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1ß release, contributing to an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of male and female postmortem human brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing mechanistic insight into the biology of neuroinflammation.
Assuntos
Doença de Alzheimer , Autofagia , Proteínas Cromossômicas não Histona , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças Neuroinflamatórias , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Autofagia/genética , Proteínas Cromossômicas não Histona/metabolismo , Citocinas/metabolismo , Inflamassomos/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismoRESUMO
The localization, number, and function of postsynaptic AMPA-type glutamate receptors (AMPARs) are crucial for synaptic plasticity, a cellular correlate for learning and memory. The Hippo pathway member WWC1 is an important component of AMPAR-containing protein complexes. However, the availability of WWC1 is constrained by its interaction with the Hippo pathway kinases LATS1 and LATS2 (LATS1/2). Here, we explored the biochemical regulation of this interaction and found that it is pharmacologically targetable in vivo. In primary hippocampal neurons, phosphorylation of LATS1/2 by the upstream kinases MST1 and MST2 (MST1/2) enhanced the interaction between WWC1 and LATS1/2, which sequestered WWC1. Pharmacologically inhibiting MST1/2 in male mice and in human brain-derived organoids promoted the dissociation of WWC1 from LATS1/2, leading to an increase in WWC1 in AMPAR-containing complexes. MST1/2 inhibition enhanced synaptic transmission in mouse hippocampal brain slices and improved cognition in healthy male mice and in male mouse models of Alzheimer's disease and aging. Thus, compounds that disrupt the interaction between WWC1 and LATS1/2 might be explored for development as cognitive enhancers.
Assuntos
Hipocampo , Peptídeos e Proteínas de Sinalização Intracelular , Plasticidade Neuronal , Fosfoproteínas , Proteínas Serina-Treonina Quinases , Receptores de AMPA , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Masculino , Humanos , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Camundongos , Plasticidade Neuronal/fisiologia , Hipocampo/metabolismo , Via de Sinalização Hippo , Serina-Treonina Quinase 3 , Transdução de Sinais , Memória/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Fator de Crescimento de Hepatócito/metabolismo , Camundongos Endogâmicos C57BL , Doença de Alzheimer/metabolismo , Fosforilação , Neurônios/metabolismoRESUMO
Caloric restriction and intermittent fasting prolong the lifespan and healthspan of model organisms and improve human health. The natural polyamine spermidine has been similarly linked to autophagy enhancement, geroprotection and reduced incidence of cardiovascular and neurodegenerative diseases across species borders. Here, we asked whether the cellular and physiological consequences of caloric restriction and fasting depend on polyamine metabolism. We report that spermidine levels increased upon distinct regimens of fasting or caloric restriction in yeast, flies, mice and human volunteers. Genetic or pharmacological blockade of endogenous spermidine synthesis reduced fasting-induced autophagy in yeast, nematodes and human cells. Furthermore, perturbing the polyamine pathway in vivo abrogated the lifespan- and healthspan-extending effects, as well as the cardioprotective and anti-arthritic consequences of fasting. Mechanistically, spermidine mediated these effects via autophagy induction and hypusination of the translation regulator eIF5A. In summary, the polyamine-hypusination axis emerges as a phylogenetically conserved metabolic control hub for fasting-mediated autophagy enhancement and longevity.
Assuntos
Autofagia , Caenorhabditis elegans , Restrição Calórica , Jejum , Longevidade , Espermidina , Autofagia/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Espermidina/metabolismo , Espermidina/farmacologia , Animais , Humanos , Caenorhabditis elegans/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fator de Iniciação de Tradução Eucariótico 5A , Drosophila melanogaster/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Camundongos , Masculino , Camundongos Endogâmicos C57BLRESUMO
Fatty acid amide hydrolase (FAAH) degrades the endocannabinoid anandamide. A polymorphism in FAAH (FAAH C385A) reduces FAAH expression, increases anandamide levels, and increases the risk of obesity. Nevertheless, some studies have found no association between FAAH C385A and obesity. We investigated whether the environmental context governs the impact of FAAH C385A on metabolic outcomes. Using a C385A knock-in mouse model, we found that FAAH A/A mice are more susceptible to glucocorticoid-induced hyperphagia, weight gain, and activation of hypothalamic AMP-activated protein kinase (AMPK). AMPK inhibition occluded the amplified hyperphagic response to glucocorticoids in FAAH A/A mice. FAAH knockdown exclusively in agouti-related protein (AgRP) neurons mimicked the exaggerated feeding response of FAAH A/A mice to glucocorticoids. FAAH A/A mice likewise presented exaggerated orexigenic responses to ghrelin, while FAAH knockdown in AgRP neurons blunted leptin anorectic responses. Together, the FAAH A/A genotype amplifies orexigenic responses and decreases anorexigenic responses, providing a putative mechanism explaining the diverging human findings.
Assuntos
Proteínas Quinases Ativadas por AMP , Endocanabinoides , Camundongos , Humanos , Animais , Proteína Relacionada com Agouti , Endocanabinoides/metabolismo , Amidoidrolases/metabolismo , ObesidadeRESUMO
High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. We demonstrate that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1ß release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1ß release, initiating an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D (GSDMD)-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of postmortem brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing new mechanistic insight into the biology of neuroinflammation.
RESUMO
Although mice mostly communicate in the ultrasonic range, they also emit audible calls. We demonstrate that mice selectively bred for high anxiety-related behavior (HAB) have a high disposition for emitting sonic calls when caught by the tail. The vocalization was unrelated to pain but sensitive to anxiolytics. As revealed by manganese-enhanced MRI, HAB mice displayed an increased tonic activity of the periaqueductal gray (PAG). Selective inhibition of the dorsolateral PAG not only reduced anxiety-like behavior but also completely abolished sonic vocalization. Calls were emitted at a fundamental frequency of 3.8 kHz, which falls into the hearing range of numerous predators. Indeed, playback of sonic vocalization attracted rats if associated with a stimulus mouse. If played back to HAB mice, sonic calls were repellent in the absence of a conspecific but attractive in their presence. Our data demonstrate that sonic vocalization attracts both predators and conspecifics depending on the context.
RESUMO
Learning and memory rely on changes in postsynaptic glutamergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type receptor (AMPAR) number, spatial organization, and function. The Hippo pathway component WW and C2 domain-containing protein 1 (WWC1) regulates AMPAR surface expression and impacts on memory performance. However, synaptic binding partners of WWC1 and its hierarchical position in AMPAR complexes are largely unclear. Using cell-surface proteomics in hippocampal tissue of Wwc1-deficient mice and by generating a hippocampus-specific interactome, we show that WWC1 is a major regulatory platform in AMPAR signaling networks. Under basal conditions, the Hippo pathway members WWC1 and large tumor-suppressor kinase (LATS) are associated, which might prevent WWC1 effects on synaptic proteins. Reduction of WWC1/LATS binding through a point mutation at WWC1 elevates the abundance of WWC1 in AMPAR complexes and improves hippocampal-dependent learning and memory. Thus, uncoupling of WWC1 from the Hippo pathway to AMPAR-regulatory complexes provides an innovative strategy to enhance synaptic transmission.
Assuntos
Proteômica , Receptores de AMPA , Animais , CamundongosRESUMO
Anxiety-like behavior of rodents is frequently accompanied by reduced exploration. Here, we identify dissociable components of anxiety, fear, and exploratory drive of sated and foraging mice. With the help of behavioral assays, including the open field task, elevated plus maze, dark-light transition task, and beetle mania task, we demonstrate a general increase in exploration by food restriction. Food-restricted mice bred for high anxiety behavior (HAB) showed ameliorated anxiety- but not fear-related behavior. By means of principal component analysis, we identified three independent components, which resemble the behavioral dimensions proposed by Gray's Reinforcement Sensitivity Theory (approach behavior, avoidance behavior, and decision making). Taken together, we demonstrate anxiolytic consequences of food restriction in a mouse model of anxiety disorders that can be dissociated from a general increase in foraging behavior.
Assuntos
Ansiolíticos , Ansiedade , Animais , Transtornos de Ansiedade , Aprendizagem da Esquiva , Comportamento Animal , Comportamento Exploratório , Medo , Aprendizagem em Labirinto , CamundongosRESUMO
The endocannabinoid system is an important regulator of the hormonal and behavioral stress responses, which critically involve corticotropin-releasing factor (CRF) and its receptors. While it has been shown that CRF and the cannabinoid type 1 (CB1) receptor are co-localized in several brain regions, the physiological relevance of this co-expression remains unclear. Using double in situ hybridization, we confirmed co-localization in the piriform cortex, the lateral hypothalamic area, the paraventricular nucleus, and the Barrington's nucleus, albeit at low levels. To study the behavioral and physiological implications of this co-expression, we generated a conditional knockout mouse line that selectively lacks the expression of CB1 receptors in CRF neurons. We found no effects on fear and anxiety-related behaviors under basal conditions nor after a traumatic experience. Additionally, plasma corticosterone levels were unaffected at baseline and after restraint stress. Only acoustic startle responses were significantly enhanced in male, but not female, knockout mice. Taken together, the consequences of depleting CB1 in CRF-positive neurons caused a confined hyperarousal phenotype in a sex-dependent manner. The current results suggest that the important interplay between the central endocannabinoid and CRF systems in regulating the organism's stress response is predominantly taking place at the level of CRF receptor-expressing neurons.
Assuntos
Receptor CB1 de Canabinoide/metabolismo , Reflexo de Sobressalto/genética , Estimulação Acústica , Animais , Corticosterona/sangue , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Córtex Piriforme/citologia , Córtex Piriforme/metabolismo , Receptor CB1 de Canabinoide/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , SexoRESUMO
Post-traumatic stress disorder (PTSD) is a chronic disease caused by traumatic incidents. Numerous studies have revealed grey matter volume differences in affected individuals. The nature of the disease renders it difficult to distinguish between a priori versus a posteriori changes. To overcome this difficulty, we studied the consequences of a traumatic event on brain morphology in mice before and 4 weeks after exposure to brief foot shocks (or sham treatment), and correlated morphology with symptoms of hyperarousal. In the latter context, we assessed hyperarousal upon confrontation with acoustic, visual, or composite (acoustic/visual/tactile) threats and integrated the individual readouts into a single Hyperarousal Score using logistic regression analysis. MRI scans with subsequent whole-brain deformation-based morphometry (DBM) analysis revealed a volume decrease of the dorsal hippocampus and an increase of the reticular nucleus in shocked mice when compared to non-shocked controls. Using the Hyperarousal Score as regressor for the post-exposure MRI measurement, we observed negative correlations with several brain structures including the dorsal hippocampus. If the development of changes with respect to the basal MRI was considered, reduction in globus pallidus volume reflected hyperarousal severity. Our findings demonstrate that a brief traumatic incident can cause volume changes in defined brain structures and suggest the globus pallidus as an important hub for the control of fear responses to threatening stimuli of different sensory modalities.
Assuntos
Nível de Alerta/fisiologia , Encéfalo/fisiopatologia , Substância Cinzenta/fisiologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Animais , Globo Pálido , Hipocampo , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , CamundongosRESUMO
Dementia is a devastating age-related disorder. Its therapy would largely benefit from the identification of susceptible subjects at early, prodromal stages of the disease. To search for such prognostic markers of cognitive impairment, we studied spatial navigation in male BALBc vs. B6N mice in combination with in vivo magnetic resonance spectroscopy (1H-MRS). BALBc mice consistently showed higher escape latencies than B6N mice, both in the Water Cross Maze (WCM) and the Morris water maze (MWM). These performance deficits coincided with higher levels of myo-inositol (mIns) in the dorsal hippocampus before and after training. Subsequent biochemical analyses of hippocampal specimens by capillary immunodetection and liquid chromatography mass spectrometry-based (LC/MS) metabolomics revealed a higher abundance of glial markers (IBA-1, S100B, and GFAP) as well as distinct alterations in metabolites including a decrease in vitamins (pantothenic acid and nicotinamide), neurotransmitters (acetylcholine), their metabolites (glutamine), and acetyl-L-carnitine. Supplementation of low abundant acetyl-L-carnitine via the drinking water, however, failed to revert the behavioral deficits shown by BALBc mice. Based on our data we suggest (i) BALBc mice as an animal model and (ii) hippocampal mIns levels as a prognostic marker of mild cognitive impairment (MCI), due to (iii) local changes in microglia and astrocyte activity, which may (iv) result in decreased concentrations of promnesic molecules.
RESUMO
The stress response is an essential mechanism for maintaining homeostasis, and its disruption is implicated in several psychiatric disorders. On the cellular level, stress activates, among other mechanisms, autophagy that regulates homeostasis through protein degradation and recycling. Secretory autophagy is a recently described pathway in which autophagosomes fuse with the plasma membrane rather than with lysosomes. Here, we demonstrate that glucocorticoid-mediated stress enhances secretory autophagy via the stress-responsive co-chaperone FK506-binding protein 51. We identify the matrix metalloproteinase 9 (MMP9) as one of the proteins secreted in response to stress. Using cellular assays and in vivo microdialysis, we further find that stress-enhanced MMP9 secretion increases the cleavage of pro-brain-derived neurotrophic factor (proBDNF) to its mature form (mBDNF). BDNF is essential for adult synaptic plasticity and its pathway is associated with major depression and posttraumatic stress disorder. These findings unravel a cellular stress adaptation mechanism that bears the potential of opening avenues for the understanding of the pathophysiology of stress-related disorders.
Assuntos
Autofagia/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dexametasona/farmacologia , Metaloproteinase 9 da Matriz/metabolismo , Animais , Autofagossomos/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Glucocorticoides/farmacologia , Células HEK293 , Humanos , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse FisiológicoRESUMO
Viruses manipulate cellular metabolism and macromolecule recycling processes like autophagy. Dysregulated metabolism might lead to excessive inflammatory and autoimmune responses as observed in severe and long COVID-19 patients. Here we show that SARS-CoV-2 modulates cellular metabolism and reduces autophagy. Accordingly, compound-driven induction of autophagy limits SARS-CoV-2 propagation. In detail, SARS-CoV-2-infected cells show accumulation of key metabolites, activation of autophagy inhibitors (AKT1, SKP2) and reduction of proteins responsible for autophagy initiation (AMPK, TSC2, ULK1), membrane nucleation, and phagophore formation (BECN1, VPS34, ATG14), as well as autophagosome-lysosome fusion (BECN1, ATG14 oligomers). Consequently, phagophore-incorporated autophagy markers LC3B-II and P62 accumulate, which we confirm in a hamster model and lung samples of COVID-19 patients. Single-nucleus and single-cell sequencing of patient-derived lung and mucosal samples show differential transcriptional regulation of autophagy and immune genes depending on cell type, disease duration, and SARS-CoV-2 replication levels. Targeting of autophagic pathways by exogenous administration of the polyamines spermidine and spermine, the selective AKT1 inhibitor MK-2206, and the BECN1-stabilizing anthelmintic drug niclosamide inhibit SARS-CoV-2 propagation in vitro with IC50 values of 136.7, 7.67, 0.11, and 0.13 µM, respectively. Autophagy-inducing compounds reduce SARS-CoV-2 propagation in primary human lung cells and intestinal organoids emphasizing their potential as treatment options against COVID-19.
Assuntos
COVID-19/metabolismo , COVID-19/virologia , SARS-CoV-2/metabolismo , Animais , Antinematódeos/farmacologia , Autofagossomos/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , COVID-19/patologia , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Humanos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Metaboloma , Niclosamida/farmacologia , Organoides , SARS-CoV-2/isolamento & purificação , Espermidina/farmacologia , Espermina/farmacologia , Tratamento Farmacológico da COVID-19RESUMO
A better understanding of context in decision-making-that is, the internal and external conditions that modulate decisions-is required to help bridge the gap between natural behaviors that evolved by natural selection and more arbitrary laboratory models of anxiety and fear. Because anxiety and fear are mechanisms evolved to manage threats from predators and other exigencies, the large behavioral, ecological and evolutionary literature on predation risk is useful for re-framing experimental research on human anxiety-related disorders. We review the trade-offs that are commonly made during antipredator decision-making in wild animals along with the context under which the behavior is performed and measured, and highlight their relevance for focused laboratory models of fear and anxiety. We then develop an integrative mechanistic model of decision-making under risk which, when applied to laboratory and field settings, should improve studies of the biological basis of normal and pathological anxiety and may therefore improve translational outcomes.
Assuntos
Medo , Comportamento Predatório , Animais , Ansiedade , Transtornos de Ansiedade , HumanosRESUMO
Optical tissue clearing using dibenzyl ether (DBE) or BABB (1 part benzyl alcohol and 2 parts benzyl benzoate) is easy in application and allows deep-tissue imaging of a wide range of specimens. However, in both substances, optical clearing and storage times of enhanced green fluorescent protein (EGFP)-expressing specimens are limited due to the continuous formation of peroxides and aldehydes, which severely quench fluorescence. Stabilisation of purified DBE or BABB by addition of the antioxidant propyl gallate efficiently preserves fluorescence signals in EGFP-expressing samples for more than a year. This enables longer clearing times and improved tissue transparency with higher fluorescence signal intensity. The here introduced clearing protocol termed stabilised DISCO allows to image spines in a whole mouse brain and to detect faint changes in the activity-dependent expression pattern of tdTomato.
Assuntos
Encéfalo/diagnóstico por imagem , Microscopia de Fluorescência/métodos , Razão Sinal-Ruído , Animais , Encéfalo/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Defensive behavioral responses are essential for survival in threating situations. The superior colliculus (SC) has been implicated in the generation of defensive behaviors elicited by visual, tactile and auditory stimuli. Furthermore, substantia nigra pars reticulata (SNr) neurons are known to exert a modulatory effect on midbrain tectum neural substrates. However, the functional role of this nigrotectal pathway in threating situations is still poorly understood. Using optogenetics in freely behaving mice, we activated SNr projections at the level of the SC, and assessed consequences on behavioral performance in an open field test (OFT) and the beetle mania task (BMT). The latter confronts a mouse with an erratic moving robo-beetle and allows to measure active and passive defensive responses upon frequent encounter of the threatening object. Channelrhodopsin-2 (ChR2)-mediated activation of the inhibitory nigrotectal pathway did not affect anxiety-like and exploratory behavior in the OFT, but increased the number of contacts between robo-beetle and test mouse in the BMT. Depending on the size of the arena, active avoidance responses were reduced, whereas tolerance and close following of the robo-beetle were significantly increased. We conclude from the data that the nigrotectal pathway plays holds the potential to modulate innate fear by attenuating threat recognition and causing a shift from defensive to approach behavior.
Assuntos
Comportamento Animal/fisiologia , Comportamento de Escolha/fisiologia , Vias Neurais/fisiologia , Colículos Superiores/fisiologia , Animais , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Bicuculina/farmacologia , Comportamento de Escolha/efeitos dos fármacos , Medo/efeitos dos fármacos , Medo/fisiologia , Camundongos Endogâmicos C57BL , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Colículos Superiores/efeitos dos fármacosRESUMO
Our current knowledge of the implications of endocannabinoids in fear and anxiety is largely based on fear conditioning paradigms and approach-avoidance conflicts. Here we establish the ethobehavioral beetle mania task (BMT), which confronts mice with an erratically moving robo-beetle. With the help of this task we demonstrate decreased tolerance yet increased avoidance responses to an approaching beetle in high-anxiety behavior (HAB) and BALBc mice compared to C57BL/6N, CD1 and normal-anxiety behavior (NAB) mice. Also DBA/2N mice showed decreased passive and increased active behavior, but followed the robo-beetle more often than HAB and BALBc mice. Treatment with diazepam (1 mg/kg) increased tolerance without affecting avoidance behavior in HAB mice. Treatment with the MAGL inhibitor JZL184 (8 mg/kg) increased flight behavior, but did not affect tolerance. The FAAH inhibitor URB597 (0.3 mg/kg), however, reduced flight behavior and enhanced tolerance to the robo-beetle. The latter effects were blocked by co-treatment with the CB1 receptor antagonist SR141716A (3 mg/kg), which failed to affect the behavior by itself. Taken together, we validate the BMT as a novel test for studying endocannabinoids beyond traditional paradigms and for assessing active fear responses in mice. Furthermore, we demonstrate panicolytic consequences of pharmacological enhancement of anandamide, but not 2-AG signaling.
Assuntos
Ansiedade/fisiopatologia , Ácidos Araquidônicos/fisiologia , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Endocanabinoides/fisiologia , Medo/fisiologia , Amidoidrolases/antagonistas & inibidores , Animais , Ansiolíticos/administração & dosagem , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Benzamidas/administração & dosagem , Benzodioxóis/administração & dosagem , Agonistas de Receptores de Canabinoides/administração & dosagem , Carbamatos/administração & dosagem , Diazepam/administração & dosagem , Medo/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/administração & dosagem , Alcamidas Poli-Insaturadas , Pirazóis/administração & dosagem , Receptor CB1 de Canabinoide/antagonistas & inibidores , RimonabantoRESUMO
BACKGROUND: Locomotor activity of rodents is an important readout to assess well-being and physical health, and is pivotal for behavioral phenotyping. Measuring homecage-activity with standard and cost-effective optical methods in mice has become difficult, as modern housing conditions (e.g. individually ventilated cages, cage enrichment) do not allow constant, unobstructed, visual access. Resolving this issue either makes greater investments necessary, especially if several experiments will be run in parallel, or is at the animals' expense. The purpose of this study is to provide an easy, yet satisfying solution for the behavioral biologist at novice makers level. RESULTS: We show the design, construction and validation of a simplified, low-cost, radar-based motion detector for home cage activity monitoring in mice. In addition we demonstrate that mice which have been selectively bred for low levels of anxiety-related behavior (LAB) have deficits in circadian photoentrainment compared to CD1 control animals. CONCLUSION: In this study we have demonstrated that our proposed low-cost microwave-based motion detector is well-suited for the study of circadian rhythms in mice.