Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Mol Microbiol ; 111(1): 269-286, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30353924

RESUMO

Agrobacterium tumefaciens transfers oncogenic T-DNA via the type IV secretion system (T4SS) into plants causing tumor formation. The acvB gene encodes a virulence factor of unknown function required for plant transformation. Here we specify AcvB as a periplasmic lysyl-phosphatidylglycerol (L-PG) hydrolase, which modulates L-PG homeostasis. Through functional characterization of recombinant AcvB variants, we showed that the C-terminal domain of AcvB (residues 232-456) is sufficient for full enzymatic activity and defined key residues for catalysis. Absence of the hydrolase resulted in ~10-fold increase in L-PG in Agrobacterium membranes and abolished T-DNA transfer and tumor formation. Overproduction of the L-PG synthase gene (lpiA) in wild-type A. tumefaciens resulted in a similar increase in the L-PG content (~7-fold) and a virulence defect even in the presence of intact AcvB. These results suggest that elevated L-PG amounts (either by overproduction of the synthase or absence of the hydrolase) are responsible for the virulence phenotype. Gradually increasing the L-PG content by complementation with different acvB variants revealed that cellular L-PG levels above 3% of total phospholipids interfere with T-DNA transfer. Cumulatively, this study identified AcvB as a novel virulence factor required for membrane lipid homeostasis and T-DNA transfer.


Assuntos
Agrobacterium tumefaciens/patogenicidade , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Homeostase , Lisina/metabolismo , Fosfatidilgliceróis/metabolismo , Fatores de Virulência/metabolismo , Agrobacterium tumefaciens/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Domínio Catalítico , Análise Mutacional de DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Deleção de Genes , Teste de Complementação Genética , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Transformação Genética , Virulência , Fatores de Virulência/genética
2.
Biochem J ; 475(11): 1885-1907, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29717024

RESUMO

A quantitative Pseudomonas aeruginosa proteomics approach revealed increased abundance of the so-far uncharacterized protein PA3911 in anaerobic biofilms grown under conditions of the cystic fibrosis lung. Physiological relevance of ORF PA3911 was demonstrated, inter alia, using phenotype microarray experiments. The mutant strain showed increased susceptibility in the presence of antimicrobials (minocycline, nafcillin, oxacillin, chloramphenicol and thiamphenicol), enhanced twitching motility and significantly impaired biofilm formation. PA3911 is a soluble, cytoplasmic protein in P. aeruginosa In protein-lipid overlay experiments, purified PA3911 bound specifically to phosphatidic acid (PA), the central hub of phospholipid metabolism. Structure-guided site-directed mutagenesis was used to explore the proposed ligand-binding cavity of PA3911. Protein variants of Leu56, Leu58, Val69 and Leu114 were shown to impair PA interaction. A comparative shotgun lipidomics approach demonstrated a multifaceted response of P. aeruginosa to anaerobic conditions at the lipid head group and fatty acid level. Lipid homeostasis in the PA3911 mutant strain was imbalanced with respect to lysophosphatidylcholine, phosphatidylcholine and diacylglycerol under anaerobic and/or aerobic conditions. The impact of the newly identified PA-binding protein on lipid homeostasis and the related macroscopic phenotypes of P. aeruginosa are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Ácidos Fosfatídicos/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/fisiologia , Adaptação Biológica , Anaerobiose , Proteínas de Bactérias/genética , Homeostase , Humanos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética
3.
Biochem J ; 474(1): 163-178, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27803248

RESUMO

The molybdenum cofactor (Moco) is a redox active prosthetic group, essentially required for numerous enzyme-catalyzed two electron transfer reactions. Moco is synthesized by an evolutionarily old and highly conserved multistep pathway. In the last step of Moco biosynthesis, the molybdenum center is inserted into the final Moco precursor adenylated molybdopterin (MPT-AMP). This unique and yet poorly characterized maturation reaction finally yields physiologically active Moco. In the model plant Arabidopsis, the two domain enzyme, Cnx1, is required for Moco formation. Recently, a genetic screen identified novel Arabidopsis cnx1 mutant plant lines each harboring a single amino acid exchange in the N-terminal Cnx1E domain. Biochemical characterization of the respective recombinant Cnx1E variants revealed two different amino acid exchanges (S197F and G175D) that impair Cnx1E dimerization, thus linking Cnx1E oligomerization to Cnx1 functionality. Analysis of the Cnx1E structure identified Cnx1E active site-bound molybdate and magnesium ions, which allowed to fine-map the Cnx1E MPT-AMP-binding site.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Calnexina , Multimerização Proteica/fisiologia , Substituição de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calnexina/química , Calnexina/genética , Calnexina/metabolismo , Domínio Catalítico , Coenzimas/química , Coenzimas/genética , Coenzimas/metabolismo , Metaloproteínas/química , Metaloproteínas/genética , Metaloproteínas/metabolismo , Cofatores de Molibdênio , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Pteridinas/química , Pteridinas/metabolismo
4.
Proc Natl Acad Sci U S A ; 112(34): 10691-6, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26261323

RESUMO

The cytoplasmic membrane is probably the most important physical barrier between microbes and the surrounding habitat. Aminoacylation of the polar head group of the phospholipid phosphatidylglycerol (PG) catalyzed by Ala-tRNA(Ala)-dependent alanyl-phosphatidylglycerol synthase (A-PGS) or by Lys-tRNA(Lys)-dependent lysyl-phosphatidylglycerol synthase (L-PGS) enables bacteria to cope with cationic peptides that are harmful to the integrity of the cell membrane. Accordingly, these synthases also have been designated as multiple peptide resistance factors (MprF). They consist of a separable C-terminal catalytic domain and an N-terminal transmembrane flippase domain. Here we present the X-ray crystallographic structure of the catalytic domain of A-PGS from the opportunistic human pathogen Pseudomonas aeruginosa. In parallel, the structure of the related lysyl-phosphatidylglycerol-specific L-PGS domain from Bacillus licheniformis in complex with the substrate analog L-lysine amide is presented. Both proteins reveal a continuous tunnel that allows the hydrophobic lipid substrate PG and the polar aminoacyl-tRNA substrate to access the catalytic site from opposite directions. Substrate recognition of A-PGS versus L-PGS was investigated using misacylated tRNA variants. The structural work presented here in combination with biochemical experiments using artificial tRNA or artificial lipid substrates reveals the tRNA acceptor stem, the aminoacyl moiety, and the polar head group of PG as the main determinants for substrate recognition. A mutagenesis approach yielded the complementary amino acid determinants of tRNA interaction. These results have broad implications for the design of L-PGS and A-PGS inhibitors that could render microbial pathogens more susceptible to antimicrobial compounds.


Assuntos
Aminoaciltransferases/química , Bacillus/enzimologia , Proteínas de Bactérias/química , Fosfatidilgliceróis/metabolismo , Pseudomonas aeruginosa/enzimologia , Fatores R , RNA de Transferência de Alanina/metabolismo , RNA de Transferência de Lisina/metabolismo , Aminoacilação , Aminoaciltransferases/metabolismo , Bacillus/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Domínio Catalítico , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Lisina/biossíntese , Modelos Moleculares , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Fosfatidilgliceróis/biossíntese , Conformação Proteica , Pseudomonas aeruginosa/genética , Proteínas Recombinantes de Fusão/química , Relação Estrutura-Atividade , Especificidade por Substrato
5.
Proc Natl Acad Sci U S A ; 110(6): 2094-8, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23341615

RESUMO

Photosynthesis uses chlorophylls for the conversion of light into chemical energy, the driving force of life on Earth. During chlorophyll biosynthesis in photosynthetic bacteria, cyanobacteria, green algae and gymnosperms, dark-operative protochlorophyllide oxidoreductase (DPOR), a nitrogenase-like metalloenzyme, catalyzes the chemically challenging two-electron reduction of the fully conjugated ring system of protochlorophyllide a. The reduction of the C-17=C-18 double bond results in the characteristic ring architecture of all chlorophylls, thereby altering the absorption properties of the molecule and providing the basis for light-capturing and energy-transduction processes of photosynthesis. We report the X-ray crystallographic structure of the substrate-bound, ADP-aluminium fluoride-stabilized (ADP·AlF(3)-stabilized) transition state complex between the DPOR components L(2) and (NB)(2) from the marine cyanobacterium Prochlorococcus marinus. Our analysis permits a thorough investigation of the dynamic interplay between L(2) and (NB)(2). Upon complex formation, substantial ATP-dependent conformational rearrangements of L(2) trigger the protein-protein interactions with (NB)(2) as well as the electron transduction via redox-active [4Fe-4S] clusters. We also present the identification of artificial "small-molecule substrates" of DPOR in correlation with those of nitrogenase. The catalytic differences and similarities between DPOR and nitrogenase have broad implications for the energy transduction mechanism of related multiprotein complexes that are involved in the reduction of chemically stable double and/or triple bonds.


Assuntos
Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Compostos de Alumínio/química , Compostos de Alumínio/metabolismo , Fluoretos/química , Fluoretos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Protoclorifilida/química , Protoclorifilida/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Estabilidade Enzimática , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Prochlorococcus/enzimologia , Prochlorococcus/genética , Conformação Proteica , Subunidades Proteicas , Homologia de Sequência de Aminoácidos
6.
J Biol Chem ; 287(43): 35796-803, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22936808

RESUMO

Pathogens often rely on thermosensing to adjust virulence gene expression. In yersiniae, important virulence-associated traits are under the control of the master regulator RovA, which uses a built-in thermosensor to control its activity. Thermal upshifts encountered upon host entry induce conformational changes in the RovA dimer that attenuate DNA binding and render the protein more susceptible to proteolysis. Here, we report the crystal structure of RovA in the free and DNA-bound forms and provide evidence that thermo-induced loss of RovA activity is promoted mainly by a thermosensing loop in the dimerization domain and residues in the adjacent C-terminal helix. These determinants allow partial unfolding of the regulator upon an upshift to 37 °C. This structural distortion is transmitted to the flexible DNA-binding domain of RovA. RovA contacts mainly the DNA backbone in a low-affinity binding mode, which allows the immediate release of RovA from its operator sites. We also show that SlyA, a close homolog of RovA from Salmonella with a very similar structure, is not a thermosensor and remains active and stable at 37 °C. Strikingly, changes in only three amino acids, reflecting evolutionary replacements in SlyA, result in a complete loss of the thermosensing properties of RovA and prevent degradation. In conclusion, only minor alterations can transform a thermotolerant regulator into a thermosensor that allows adjustment of virulence and fitness determinants to their thermal environment.


Assuntos
Proteínas de Bactérias/química , Dobramento de Proteína , Fatores de Transcrição/química , Fatores de Virulência/química , Yersinia pseudotuberculosis/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Temperatura Alta , Ligação Proteica , Estrutura Terciária de Proteína , Proteólise , Salmonella/química , Salmonella/genética , Salmonella/metabolismo , Salmonella/patogenicidade , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/patogenicidade
7.
J Biol Chem ; 287(46): 39224-32, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22965230

RESUMO

Hepatitis C virus (HCV) NS3-4A protease is essential for viral replication. All current small molecular weight drugs against NS3-4A are substrate peptidomimetics that have a similar binding and resistance profile. We developed inhibitory peptides (IPs) capping the active site and binding via a novel "tyrosine" finger at an alternative NS3-4A site that is of particular interest for further HCV drug development. The peptides are not cleaved due to a combination of geometrical constraints and impairment of the oxyanion hole function. Selection and optimization through combinatorial phagemid display, protein crystallography, and further modifications resulted in a 32-amino acid peptide with a K(i) of 0.53 nm. Inhibition of viral replication in cell culture was demonstrated by fusion to a cell-penetrating peptide. Negligible susceptibility to known (A156V and R155K) resistance mutations of the NS3-4A protease was observed. This work shows for the first time that antiviral peptides can target an intracellular site and reveals a novel druggable site on the HCV protease.


Assuntos
Proteínas de Transporte/química , Mutação , Proteínas não Estruturais Virais/química , Antivirais/farmacologia , Sítios de Ligação , Peptídeos Penetradores de Células/química , Cristalografia/métodos , Desenho de Fármacos , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Humanos , Concentração Inibidora 50 , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Modelos Moleculares , Conformação Molecular , Biblioteca de Peptídeos , Peptídeos/química , Solventes/química
8.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 1): 114-20, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23275169

RESUMO

In recent decades, several canonical serine protease inhibitor families have been classified and characterized. In contrast to most trypsin inhibitors, those from garden four o'clock (Mirabilis jalapa) and spinach (Spinacia oleracea) do not share sequence similarity and have been proposed to form the new Mirabilis serine protease inhibitor family. These 30-40-amino-acid inhibitors possess a defined disulfide-bridge topology and belong to the cystine-knot miniproteins (knottins). To date, no atomic structure of this inhibitor family has been solved. Here, the first structure of S. oleracea trypsin inhibitor III (SOTI-III), in complex with bovine pancreatic trypsin, is reported. The inhibitor was synthesized by solid-phase peptide synthesis on a multi-milligram scale and was assayed to test its inhibitory activity and binding properties. The structure confirmed the proposed cystine-bridge topology. The structural features of SOTI-III suggest that it belongs to a new canonical serine protease inhibitor family with promising properties for use in protein-engineering and medical applications.


Assuntos
Aprotinina/química , Proteínas de Plantas/química , Spinacia oleracea/química , Animais , Bovinos , Cristalização , Cristalografia por Raios X , Mirabilis/química , Proteínas de Plantas/farmacologia , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia
9.
Nat Chem Biol ; 8(1): 117-24, 2011 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-22138621

RESUMO

Polyketides are structurally diverse and medically important natural products that have various biological activities. During biosynthesis, chain elongation uses activated dicarboxylic acid building blocks, and their availability therefore limits side chain variation in polyketides. Recently, the crotonyl-CoA carboxylase-reductase (CCR) class of enzymes was identified in primary metabolism and was found to be involved in extender-unit biosynthesis of polyketides. These enzymes are, in theory, capable of forming dicarboxylic acids that show any side chain from the respective unsaturated fatty acid precursor. To our knowledge, we here report the first crystal structure of a CCR, the hexylmalonyl-CoA synthase from Streptomyces sp. JS360, in complex with its substrate. Structural analysis and biochemical characterization of the enzyme, including active site mutations, are reported. Our analysis reveals how primary metabolic CCRs can evolve to produce various dicarboxylic acid building blocks, setting the stage to use CCRs for the production of unique extender units and, consequently, altered polyketides.


Assuntos
Acil-CoA Desidrogenases/química , Ciclo do Carbono , Policetídeos/química , Streptomyces/enzimologia , Acil-CoA Desidrogenases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Policetídeos/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Especificidade por Substrato
10.
J Biol Chem ; 286(30): 26754-67, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21632530

RESUMO

During the biosynthesis of heme d(1), the essential cofactor of cytochrome cd(1) nitrite reductase, the NirE protein catalyzes the methylation of uroporphyrinogen III to precorrin-2 using S-adenosyl-L-methionine (SAM) as the methyl group donor. The crystal structure of Pseudomonas aeruginosa NirE in complex with its substrate uroporphyrinogen III and the reaction by-product S-adenosyl-L-homocysteine (SAH) was solved to 2.0 Å resolution. This represents the first enzyme-substrate complex structure for a SAM-dependent uroporphyrinogen III methyltransferase. The large substrate binds on top of the SAH in a "puckered" conformation in which the two pyrrole rings facing each other point into the same direction either upward or downward. Three arginine residues, a histidine, and a methionine are involved in the coordination of uroporphyrinogen III. Through site-directed mutagenesis of the nirE gene and biochemical characterization of the corresponding NirE variants the amino acid residues Arg-111, Glu-114, and Arg-149 were identified to be involved in NirE catalysis. Based on our structural and biochemical findings, we propose a potential catalytic mechanism for NirE in which the methyl transfer reaction is initiated by an arginine catalyzed proton abstraction from the C-20 position of the substrate.


Assuntos
Proteínas de Bactérias/química , Metiltransferases/química , Pseudomonas aeruginosa/enzimologia , Uroporfirinogênios/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Heme/análogos & derivados , Heme/biossíntese , Heme/química , Heme/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/genética , Uroporfirinogênios/genética , Uroporfirinogênios/metabolismo
11.
J Biol Chem ; 286(20): 17593-600, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454585

RESUMO

Despite the widespread biological function of carbohydrates, the polysaccharide synthesis mechanisms of glycosyltransferases remain largely unexplored. Bacterial levansucrases (glycoside hydrolase family 68) synthesize high molecular weight, ß-(2,6)-linked levan from sucrose by transfer of fructosyl units. The kinetic and biochemical characterization of Bacillus megaterium levansucrase SacB variants Y247A, Y247W, N252A, D257A, and K373A reveal novel surface motifs remote from the sucrose binding site with distinct influence on the polysaccharide product spectrum. The wild type activity (k(cat)) and substrate affinity (K(m)) are maintained. The structures of the SacB variants reveal clearly distinguishable subsites for polysaccharide synthesis as well as an intact active site architecture. These results lead to a new understanding of polysaccharide synthesis mechanisms. The identified surface motifs are discussed in the context of related glycosyltransferases.


Assuntos
Bacillus megaterium/enzimologia , Proteínas de Bactérias/metabolismo , Hexosiltransferases/metabolismo , Polissacarídeos Bacterianos/biossíntese , Motivos de Aminoácidos , Substituição de Aminoácidos , Bacillus megaterium/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Hexosiltransferases/química , Hexosiltransferases/genética , Mutação de Sentido Incorreto , Polissacarídeos Bacterianos/genética
12.
J Biol Chem ; 285(35): 27336-27345, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20558746

RESUMO

During (bacterio)chlorophyll biosynthesis of many photosynthetically active organisms, dark operative protochlorophyllide oxidoreductase (DPOR) catalyzes the two-electron reduction of ring D of protochlorophyllide to form chlorophyllide. DPOR is composed of the subunits ChlL, ChlN, and ChlB. Homodimeric ChlL(2) bearing an intersubunit [4Fe-4S] cluster is an ATP-dependent reductase transferring single electrons to the heterotetrameric (ChlN/ChlB)(2) complex. The latter contains two intersubunit [4Fe-4S] clusters and two protochlorophyllide binding sites, respectively. Here we present the crystal structure of the catalytic (ChlN/ChlB)(2) complex of DPOR from the cyanobacterium Thermosynechococcus elongatus at a resolution of 2.4 A. Subunits ChlN and ChlB exhibit a related architecture of three subdomains each built around a central, parallel beta-sheet surrounded by alpha-helices. The (ChlN/ChlB)(2) crystal structure reveals a [4Fe-4S] cluster coordinated by an aspartate oxygen alongside three cysteine ligands. Two equivalent substrate binding sites enriched in aromatic residues for protochlorophyllide substrate binding are located at the interface of each ChlN/ChlB half-tetramer. The complete octameric (ChlN/ChlB)(2)(ChlL(2))(2) complex of DPOR was modeled based on the crystal structure and earlier functional studies. The electron transfer pathway via the various redox centers of DPOR to the substrate is proposed.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/enzimologia , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Domínio Catalítico , Cristalografia por Raios X , Nitrogenase/química , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Protoclorifilida , Especificidade por Substrato
13.
J Biol Chem ; 285(22): 17197-208, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20363740

RESUMO

A common theme in bacterial pathogenesis is the manipulation of eukaryotic cells by targeting the cytoskeleton. This is in most cases achieved either by modifying actin, or indirectly via activation of key regulators controlling actin dynamics such as Rho-GTPases. A novel group of bacterial virulence factors termed the WXXXE family has emerged as guanine nucleotide exchange factors (GEFs) for these GTPases. The precise mechanism of nucleotide exchange, however, has remained unclear. Here we report the structure of the WXXXE-protein IpgB2 from Shigella flexneri and its complex with human RhoA. We unambiguously identify IpgB2 as a bacterial RhoA-GEF and dissect the molecular mechanism of GDP release, an essential prerequisite for GTP binding. Our observations uncover that IpgB2 induces conformational changes on RhoA mimicking DbI- but not DOCK family GEFs. We also show that dissociation of the GDP.Mg(2+) complex is preceded by the displacement of the metal ion to the alpha-phosphate of the nucleotide, diminishing its affinity to the GTPase. These data refine our understanding of the mode of action not only of WXXXE GEFs but also of mammalian GEFs of the DH/PH family.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Shigella flexneri/metabolismo , Proteínas rac1 de Ligação ao GTP/química , Proteína rhoA de Ligação ao GTP/metabolismo , Clonagem Molecular , Citoesqueleto/metabolismo , Guanosina Difosfato/química , Guanosina Trifosfato/química , Humanos , Íons , Magnésio/química , Metais/química , Nucleotídeos/química , Ligação Proteica , Conformação Proteica , Proteínas rac1 de Ligação ao GTP/metabolismo
14.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 2): 81-90, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21245528

RESUMO

In enteropathogenic Yersinia, the expression of several early-phase virulence factors such as invasin is tightly regulated in response to environmental cues. The responsible regulatory network is complex, involving several regulatory RNAs and proteins such as the LysR-type transcription regulator (LTTR) RovM. In this study, the crystal structure of the effector-binding domain (EBD) of RovM, the first LTTR protein described as being involved in virulence regulation, was determined at a resolution of 2.4 Å. Size-exclusion chromatography and comparison with structures of full-length LTTRs show that RovM is most likely to adopt a tetrameric arrangement with two distant DNA-binding domains (DBDs), causing the DNA to bend around it. Additionally, a cavity was detected in RovM which could bind small inducer molecules.


Assuntos
Proteínas de Bactérias/química , Fatores de Transcrição/química , Yersinia pseudotuberculosis/química , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
15.
J Biol Chem ; 284(47): 32709-16, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19801657

RESUMO

When methyl-substituted aromatic compounds are degraded via ortho (intradiol)-cleavage of 4-methylcatechol, the dead-end metabolite 4-methylmuconolactone (4-ML) is formed. Degradation of 4-ML has only been described in few bacterial species, including Pseudomonas reinekei MT1. The isomerization of 4-ML to 3-methylmuconolactone (3-ML) is the first step required for the mineralization of 4-ML and is catalyzed by an enzyme termed 4-methylmuconolactone methylisomerase (MLMI). We identified the gene encoding MLMI in P. reinekei MT1 and solved the crystal structures of MLMI in complex with 3-ML at 1.4-A resolution, with 4-ML at 1.9-A resolution and with a MES buffer molecule at 1.45-A resolution. MLMI exhibits a ferredoxin-like fold and assembles as a tight functional homodimeric complex. We were able to assign the active site clefts of MLMI from P. reinekei MT1 and of the homologous MLMI from Cupriavidus necator JMP134, which has previously been crystallized in a structural genomics project. Kinetic and structural analysis of wild-type MLMI and variants created by site-directed mutagenesis indicate Tyr-39 and His-26 to be the most probable catalytic residues. The previously proposed involvement of Cys-67 in covalent catalysis can now be excluded. Residue His-52 was found to be important for substrate affinity, with only marginal effect on catalytic activity. Based on these results, a novel catalytic mechanism for the isomerization of 4-ML to 3-ML by MLMI, involving a bislactonic intermediate, is proposed. This broadens the knowledge about the diverse group of proteins exhibiting a ferredoxin-like fold.


Assuntos
Proteínas de Bactérias/química , Cristalografia por Raios X/métodos , Transferases Intramoleculares/química , Isomerases/química , Lactonas/química , Catálise , Domínio Catalítico , Clonagem Molecular , Cisteína/química , Ferredoxinas/química , Genômica , Histidina/química , Cinética , Modelos Químicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Pseudomonas/enzimologia , Especificidade por Substrato
16.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 9): 979-87, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20823549

RESUMO

The human ATP-binding cassette (ABC) transporter ABCB6 is involved in haem-precursor transport across the mitochondrial membrane. The crystal structure of its nucleotide-binding domain (NBD) has been determined in the apo form and in complexes with ADP, with ADP and Mg(2+) and with ATP at high resolution. The overall structure is L-shaped and consists of two lobes, consistent with other reported NBD structures. Nucleotide binding is mediated by the highly conserved Tyr599 and the Walker A motif, and induces notable structural changes. Structural comparison with other structurally characterized NBDs and full-length ABC transporters gives the first insight into the possible catalytic mechanism of ABCB6 and the role of the N-terminal helix alpha(1) in full-length ABCB6.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Nucleotídeos/química , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia Estrutural de Proteína
17.
Mol Microbiol ; 71(6): 1509-22, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19210622

RESUMO

During a bacterial infection, each successive step is orchestrated by a dedicated set of virulence factors. In Gram-positive bacteria, the presentation or release of such factors is crucially dependent on the continual remodelling of the cell wall. We have investigated the autolysin or peptidoglycan hydrolase Auto (Lmo1076) from the human pathogen Listeria monocytogenes to structurally and biochemically underpin its role in host cell invasion. We demonstrate that Auto is an N-acetylglucosaminidase, that it is autoinhibited when newly secreted but activated by proteolytic cleavage, that it has an acidic pH optimum and that it preferentially cleaves acetylated over de-acetylated peptidoglycan. The crystal structure of Auto, the first for glycoside hydrolase family 73, and the first for a listerial autolysin, indicates that autoinhibition is due to an N-terminal alpha-helix unique to Auto that physically blocks the substrate-binding cleft. We identify Glu122 and Glu156 as the two catalytically essential carboxylate groups. The physical properties of Auto as well as its localization to lipoteichoic acid by its four C-terminal GW modules imply cell wall degradation by Auto to be highly co-ordinated. Its spatio-temporally controlled activation and localized activity in an acidified environment indicate that it facilitates remodelling of the cell wall and may be involved in co-ordinating the release of virulence factors at specific stages of an infection.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria monocytogenes/enzimologia , Proteínas de Membrana/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Proteínas de Bactérias/genética , Domínio Catalítico , Parede Celular/metabolismo , Clonagem Molecular , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Concentração de Íons de Hidrogênio , Lipopolissacarídeos/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Proteínas de Membrana/genética , Mutagênese Sítio-Dirigida , N-Acetil-Muramil-L-Alanina Amidase/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácidos Teicoicos/metabolismo , Virulência
18.
Antimicrob Agents Chemother ; 54(1): 267-72, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19822707

RESUMO

The recently discovered antibacterial compound alaremycin, produced by Streptomyces sp. A012304, structurally closely resembles 5-aminolevulinic acid, the substrate of porphobilinogen synthase. During the initial steps of heme biosynthesis, two molecules of 5-aminolevulinic acid are asymmetrically condensed to porphobilinogen. Alaremycin was found to efficiently inhibit the growth of both Gram-negative and Gram-positive bacteria. Using the newly created heme-permeable strain Escherichia coli CSA1, we are able to uncouple heme biosynthesis from bacterial growth and demonstrate that alaremycin targets the heme biosynthetic pathway. Further studies focused on the activity of alaremycin against the opportunistic pathogenic bacterium Pseudomonas aeruginosa. The MIC of alaremycin was determined to be 12 mM. Alaremycin was identified as a direct inhibitor of recombinant purified P. aeruginosa porphobilinogen synthase and had a K(i) of 1.33 mM. To understand the molecular basis of alaremycin's antibiotic activity at the atomic level, the P. aeruginosa porphobilinogen synthase was cocrystallized with the alaremycin. At 1.75-A resolution, the crystal structure reveals that the antibiotic efficiently blocks the active site of porphobilinogen synthase. The antibiotic binds as a reduced derivative of 5-acetamido-4-oxo-5-hexenoic acid. The corresponding methyl group is, however, not coordinated by any amino acid residues of the active site, excluding its functional relevance for alaremycin inhibition. Alaremycin is covalently bound by the catalytically important active-site lysine residue 260 and is tightly coordinated by several active-site amino acids. Our data provide a solid structural basis to further improve the activity of alaremycin for rational drug design. Potential approaches are discussed.


Assuntos
Aminocaproatos/farmacologia , Antibacterianos/farmacologia , Heme/biossíntese , Sintase do Porfobilinogênio/antagonistas & inibidores , Sintase do Porfobilinogênio/química , Pseudomonas aeruginosa/metabolismo , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/biossíntese , Cristalização , Farmacorresistência Bacteriana/genética , Vetores Genéticos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Cinética , Magnésio/farmacologia , Methanosarcina barkeri/efeitos dos fármacos , Methanosarcina barkeri/genética , Methanosarcina barkeri/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Proteica , Zinco/farmacologia
19.
Biol Chem ; 391(1): 55-63, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19919179

RESUMO

During heme biosynthesis the oxygen-independent coproporphyrinogen III oxidase HemN catalyzes the oxidative decarboxylation of the two propionate side chains on rings A and B of coproporphyrinogen III to the corresponding vinyl groups to yield protoporphyrinogen IX. Here, the sequence of the two decarboxylation steps during HemN catalysis was investigated. A reaction intermediate of HemN activity was isolated by HPLC analysis and identified as monovinyltripropionic acid porphyrin by mass spectrometry. This monovinylic reaction intermediate exhibited identical chromatographic behavior during HPLC analysis as harderoporphyrin (3-vinyl-8,13,17-tripropionic acid-2,7,12,18-tetramethylporphyrin). Furthermore, HemN was able to utilize chemically synthesized harderoporphyrinogen as substrate and converted it to protoporphyrinogen IX. These results suggest that during HemN catalysis the propionate side chain of ring A of coproporphyrinogen III is decarboxylated prior to that of ring B.


Assuntos
Coproporfirinogênio Oxidase/metabolismo , Coproporfirinogênios/metabolismo , Porfirinogênios/metabolismo , Protoporfirinas/biossíntese , Cromatografia Líquida de Alta Pressão , Humanos , Ressonância Magnética Nuclear Biomolecular
20.
FEBS J ; 274(17): 4609-14, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17697121

RESUMO

The initial step of tetrapyrrole biosynthesis in Escherichia coli involves the NADPH-dependent reduction by glutamyl-tRNA reductase (GluTR) of tRNA-bound glutamate to glutamate-1-semialdehyde. We evaluated the contribution of the glutamate moiety of glutamyl-tRNA to substrate specificity in vitro using a range of substrates and enzyme variants. Unexpectedly, we found that tRNA(Glu) mischarged with glutamine was a substrate for purified recombinant GluTR. Similarly unexpectedly, the substitution of amino acid residues involved in glutamate side chain binding (S109A, T49V, R52K) or in stabilizing the arginine 52 glutamate interaction (glutamate 54 and histidine 99) did not abrogate enzyme activity. Replacing glutamine 116 and glutamate 114, involved in glutamate-enzyme interaction near the aminoacyl bond to tRNA(Glu), by leucine and lysine, respectively, however, did abolish reductase activity. We thus propose that the ester bond between glutamate and tRNA(Glu) represents the crucial determinant for substrate recognition by GluTR, whereas the necessity for product release by a 'back door' exit allows for a degree of structural variability in the recognition of the amino acid moiety. Analyzing the esterase activity, which occured in the absence of NADPH, of GluTR variants using the substrate 4-nitrophenyl acetate confirmed the crucial role of cysteine 50 for thioester formation. Finally, the GluTR variant Q116L was observed to lack reductase activity whereas esterase activity was retained. Structure-based molecular modeling indicated that glutamine 116 may be crucial in positioning the nicotinamide group of NADPH to allow for productive hydride transfer to the substrate. Our data thus provide new information about the distinct function of active site residues of GluTR from E. coli.


Assuntos
Aldeído Oxirredutases/metabolismo , Escherichia coli/enzimologia , Ácido Glutâmico/metabolismo , Hidrogênio/metabolismo , Aldeído Oxirredutases/genética , Sequência de Bases , Catálise , Cromatografia Líquida de Alta Pressão , Primers do DNA , Cinética , Mutagênese Sítio-Dirigida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA