Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS Pathog ; 15(9): e1008036, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31525249

RESUMO

Cytomegalovirus (CMV) is a ubiquitous ß-herpesvirus that establishes life-long latent infection in a high percentage of the population worldwide. CMV induces the strongest and most durable CD8+ T cell response known in human clinical medicine. Due to its unique properties, the virus represents a promising candidate vaccine vector for the induction of persistent cellular immunity. To take advantage of this, we constructed a recombinant murine CMV (MCMV) expressing an MHC-I restricted epitope from influenza A virus (IAV) H1N1 within the immediate early 2 (ie2) gene. Only mice that were immunized intranasally (i.n.) were capable of controlling IAV infection, despite the greater potency of the intraperitoneally (i.p.) vaccination in inducing a systemic IAV-specific CD8+ T cell response. The protective capacity of the i.n. immunization was associated with its ability to induce IAV-specific tissue-resident memory CD8+ T (CD8TRM) cells in the lungs. Our data demonstrate that the protective effect exerted by the i.n. immunization was critically mediated by antigen-specific CD8+ T cells. CD8TRM cells promoted the induction of IFNγ and chemokines that facilitate the recruitment of antigen-specific CD8+ T cells to the lungs. Overall, our results showed that locally applied MCMV vectors could induce mucosal immunity at sites of entry, providing superior immune protection against respiratory infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade nas Mucosas , Vacinas contra Influenza/imunologia , Muromegalovirus/imunologia , Administração Intranasal , Sequência de Aminoácidos , Animais , Linhagem Celular , Quimiocinas/biossíntese , Epitopos de Linfócito T/administração & dosagem , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Feminino , Produtos do Gene env/administração & dosagem , Produtos do Gene env/genética , Produtos do Gene env/imunologia , Vetores Genéticos , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Pulmão/imunologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Muromegalovirus/genética , Células NIH 3T3 , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
2.
PLoS Pathog ; 14(2): e1006858, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29390040

RESUMO

Gastrointestinal infections caused by enteric yersiniae can become persistent and complicated by relapsing enteritis and severe autoimmune disorders. To establish a persistent infection, the bacteria have to cope with hostile surroundings when they transmigrate through the intestinal epithelium and colonize underlying gut-associated lymphatic tissues. How the bacteria gain a foothold in the face of host immune responses is poorly understood. Here, we show that the CNFY toxin, which enhances translocation of the antiphagocytic Yop effectors, induces inflammatory responses. This results in extensive tissue destruction, alteration of the intestinal microbiota and bacterial clearance. Suppression of CNFY function, however, increases interferon-γ-mediated responses, comprising non-inflammatory antimicrobial activities and tolerogenesis. This process is accompanied by a preterm reprogramming of the pathogen's transcriptional response towards persistence, which gives the bacteria a fitness edge against host responses and facilitates establishment of a commensal-type life style.


Assuntos
Toxinas Bacterianas/genética , Deleção de Genes , Inflamação/genética , Fatores de Virulência/genética , Infecções por Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/genética , Animais , Ceco/microbiologia , Progressão da Doença , Feminino , Gastroenterite/genética , Gastroenterite/microbiologia , Gastroenteropatias/genética , Gastroenteropatias/microbiologia , Microbioma Gastrointestinal/fisiologia , Inflamação/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Organismos Geneticamente Modificados , Yersinia pseudotuberculosis/patogenicidade , Infecções por Yersinia pseudotuberculosis/patologia
3.
J Immunol ; 199(3): 920-930, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28652399

RESUMO

Foxp3-expressing regulatory T cells (Tregs) are essential regulators of immune homeostasis and, thus, are prime targets for therapeutic interventions of diseases such as cancer and autoimmunity. c-REL and IκBNS are important regulators of Foxp3 induction in Treg precursors upon γ-chain cytokine stimulation. In c-REL/IκBNS double-deficient mice, Treg numbers were dramatically reduced, indicating that together, c-REL and IκBNS are pivotal for Treg development. However, despite the highly reduced Treg compartment, double-deficient mice did not develop autoimmunity even when aged to more than 1 y, suggesting that c-REL and IκBNS are required for T cell effector function as well. Analyzing Treg development in more detail, we identified a CD122+ subset within the CD25-Foxp3- precursor population, which gave rise to classical CD25+Foxp3- Treg precursors. Importantly, c-REL, but not IκBNS, controlled the generation of classical CD25+Foxp3- precursors via direct binding to the Cd25 locus. Thus, we propose that CD4+GITR+CD122+CD25-Foxp3- cells represent a Treg pre-precursor population, whose transition into Treg precursors is mediated via c-REL.


Assuntos
Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Proteínas Proto-Oncogênicas c-rel/metabolismo , Linfócitos T Reguladores/fisiologia , Animais , Autoimunidade , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Subunidade beta de Receptor de Interleucina-2/genética , Subunidade beta de Receptor de Interleucina-2/imunologia , Camundongos , Inibidor de NF-kappaB alfa/deficiência , Inibidor de NF-kappaB alfa/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-rel/deficiência , Proteínas Proto-Oncogênicas c-rel/genética , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia
4.
Sci Rep ; 9(1): 16362, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31704965

RESUMO

The contribution of natural killer (NK) cells to the clearance of hepatic viral infections is well recognized. The recently discovered heterogeneity of NK cell populations renders them interesting targets for immune interventions. Invariant natural killer T (iNKT) cells represent a key interaction partner for hepatic NK cells. The present study addressed whether characteristics of NK cells in the liver can be shaped by targeting iNKT cells. For this, the CD1d-binding pegylated glycolipid αGalCerMPEG was assessed for its ability to modulate the features of NK cells permanently or transiently residing in the liver. In vivo administration resulted in enhanced functionality of educated and highly differentiated CD27+ Mac-1+ NK cells accompanied by an increased proliferation. Improved liver homing was supported by serum-derived and cellular factors. Reduced viral loads in a mCMV infection model confirmed the beneficial effect of NK cells located in the liver upon stimulation with αGalCerMPEG. Thus, targeting iNKT cell-mediated NK cell activation in the liver represents a promising approach for the establishment of liver-directed immune interventions.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Células Matadoras Naturais/imunologia , Fígado/imunologia , Ativação Linfocitária/imunologia , Células T Matadoras Naturais/imunologia , Animais , Antígenos CD1d/metabolismo , Movimento Celular , Proliferação de Células , Citomegalovirus/efeitos dos fármacos , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/virologia , Galactosilceramidas/farmacologia , Glicolipídeos/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/metabolismo , Polietilenoglicóis/química
5.
J Am Assoc Lab Anim Sci ; 58(1): 87-91, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401066

RESUMO

The sterilization of potentially infectious animal carcasses is an important biologic safety issue in animal facilities operating as infection or quarantine barriers. However, the literature lacks a validated protocol. Here we describe the validation of an autoclave program suitable for daily use in a small rodent biocontainment unit. We evaluated several procedures for processing mouse carcasses in a standard autoclave. Heat sensors and biologic indicators were implanted inside the peritoneal cavity of dead mice, which were loaded at various densities into IVC cages or metal boxes. Heat sensors revealed broad differences in temperature inside carcasses compared with the autoclave chamber. Achieving the appropriate sterilization temperature was considerably prolonged in carcasses compared with typical laboratory waste material. We show that for 5 cadavers placed well separated inside an IVC, a modified program for mouse cage sterilization using 134 °C for 15 min is suitable. To sterilize approximately 1 kg of carcasses in autoclavable boxes, a period of 6 h is required to reach an effective temperature of 121 °C for 60 min at the center of the waste by using an autoclave program for liquids. In conclusion, we here validated 2 protocols for the sterilization of potentially infectious mouse carcasses, to ensure the application of efficacious procedures.


Assuntos
Cadáver , Esterilização/métodos , Animais , Ciência dos Animais de Laboratório , Camundongos , Reprodutibilidade dos Testes , Temperatura
6.
Oncoimmunology ; 7(2): e1382791, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29308303

RESUMO

Cancer is one of the leading causes of death in the industrialized world and represents a tremendous social and economic burden. As conventional therapies fail to provide a sustainable cure for most cancer patients, the emerging unique immune therapeutic approach of bacteria-mediated tumor therapy (BMTT) is marching towards a feasible solution. Although promising results have been obtained with BMTT using various preclinical tumor models, for advancement a major concern is immunity against the bacterial vector itself. Pre-exposure to the therapeutic agent under field conditions is a reasonable expectation and may limit the therapeutic efficacy of BMTT. In the present study, we investigated the therapeutic potential of Salmonella and E. coli vector strains in naïve and immunized tumor bearing mice. Pre-exposure to the therapeutic agent caused a significant aberrant phenotype of the microenvironment of colonized tumors and limited the in vivo efficacy of established BMTT vector strains Salmonella SL7207 and E. coli Symbioflor-2. Using targeted genetic engineering, we generated the optimized auxotrophic Salmonella vector strain SF200 (ΔlpxR9 ΔpagL7 ΔpagP8 ΔaroA ΔydiV ΔfliF) harboring modifications in Lipid A and flagella synthesis. This combination of mutations resulted in an increased immune-stimulatory capacity and as such the strain was able to overcome the efficacy-limiting effects of pre-exposure. Thus, we conclude that any limitations of BMTT concerning anti-bacterial immunity may be countered by strategies that optimize the immune-stimulatory capacity of the attenuated vector strains.

7.
Front Immunol ; 9: 2317, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386330

RESUMO

Myeloid-derived suppressor cells (MDSC) are immature myeloid cells with immunomodulatory function. To study the mechanism by which MDSC affect antimicrobial immunity, we infected mice with two M. avium strains of differential virulence, highly virulent Mycobacterium avium subsp. avium strain 25291 (MAA) and low virulent Mycobacterium avium subsp. hominissuis strain 104 (MAH). Intraperitoneal infection with MAA, but not MAH, caused severe disease and massive splenic infiltration of monocytic MDSC (M-MDSC; Gr-1intCD11bhiCD11cint) expressing inducible NO synthase (Nos2) and bearing high numbers of mycobacteria. Depletion experiments demonstrated that M-MDSC were essential for disease progression. NO production by M-MDSC influenced antigen-uptake and processing by dendritic cells and proliferation of CD4+ T cells. M-MDSC were also induced in MAA-infected mice lacking Nos2. In these mice CD4+ T cell expansion and control of infection were restored. However, T cell inhibition was only partially relieved and arginase (Arg) 1-expressing M-MDSC were accumulated. Likewise, inhibition of Arg1 also partially rescued T cell proliferation. Thus, mycobacterial virulence results in the induction of M-MDSC that block the T cell response in a Nos2- and Arg1-dependent manner.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Mycobacterium avium/imunologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tuberculose/veterinária , Animais , Biomarcadores , Antígeno CD11b/metabolismo , Antígeno CD11c/metabolismo , Feminino , Interações Hospedeiro-Patógeno/imunologia , Imunofenotipagem , Ativação Linfocitária/imunologia , Camundongos , Óxido Nítrico/metabolismo , Receptores de Quimiocinas/metabolismo , Baço/imunologia , Baço/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-29707522

RESUMO

Background: Group A streptococci may induce lymphopenia, but the value of lymphocyte loss as early biomarkers for systemic spread and severe infection has not been examined systematically. Methods: We evaluated peripheral blood cell indices as biomarkers for severity and spread of infection in a mouse model of Streptococcus pyogenes skin infection, using two isolates of greatly differing virulence. Internal organs were examined histologically. Results: After subcutaneous inoculation, strain AP1 disseminated rapidly to peripheral blood and internal organs, causing frank sepsis. In contrast, seeding of internal organs by 5448 was mild, this strain could not be isolated from blood, and infection remained mostly localized to skin. Histopathologic examination of liver revealed microvesicular fatty change (steatosis) in AP1 infection, and examination of spleen showed elevated apoptosis and blurring of the white pulp/red pulp border late (40 h post infection) in AP1 infection. Both strains caused profound lymphopenia, but lymphocyte loss was more rapid early in AP1 infection, and lymphocyte count at 6 h post infection was the most accurate early marker for AP1 infection (area under the receiver operator curve [AUC] = 0.93), followed by the granulocyte/lymphocyte ratio (AUC = 0.89). Conclusions: The results suggest that virulence of S. pyogenes correlates with the degree of early lymphopenia and underscore the value of peripheral blood indices to predict severity of bacterial infections in mice. Early lymphopenia and elevated granulocyte/lymphocyte ratio merit further investigation as biomarkers for systemic spread of S. pyogenes skin infections in humans and, possibly, related pyogenic streptococci in humans and animals.


Assuntos
Carga Bacteriana , Granulócitos/citologia , Linfócitos/citologia , Linfopenia/microbiologia , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/patogenicidade , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Sepse/microbiologia , Pele/microbiologia , Pele/patologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/imunologia , Virulência
9.
Oncotarget ; 8(30): 49988-50001, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28637010

RESUMO

Cancer is a devastating disease and a large socio-economic burden. Novel therapeutic solutions are on the rise, although a cure remains elusive. Application of microorganisms represents an ancient therapeutic strategy, lately revoked and refined via simultaneous attenuation and amelioration of pathogenic properties. Salmonella Typhimurium has prevailed in preclinical development. Yet, using virulent strains for systemic treatment might cause severe side effects. In the present study, we highlight a modified strain based on Salmonella Typhimurium UK-1 expressing hexa-acylated Lipid A. We corroborate improved anti-tumor properties of this strain and investigate to which extent an intra-tumoral (i.t.) route of infection could help improve safety and retain advantages of systemic intravenous (i.v.) application. Our results show that i.t. infection exhibits therapeutic efficacy against CT26 and F1.A11 tumors similar to a systemic route of inoculation. Moreover, i.t. application allows extensive dose titration without compromising tumor colonization. Adverse colonization of healthy organs was generally reduced via i.t. infection and accompanied by less body weight loss of the murine host. Despite local application, adjuvanticity remained, and a CT26-specific CD8+ T cell response was effectively stimulated. Most interestingly, also secondary tumors could be targeted with this strategy, thereby extending the unique tumor targeting ability of Salmonella. The i.t. route of inoculation may reap the benefits of systemic infection and aid in safety assurance while directing potency of an oncolytic vector to where it is most needed, namely the primary tumor.


Assuntos
Terapia Biológica/métodos , Neoplasias/terapia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/fisiologia , Imunidade Adaptativa , Administração Intravenosa , Animais , Terapia Biológica/efeitos adversos , Modelos Animais de Doenças , Humanos , Imunidade Inata , Imunomodulação , Injeções Intralesionais , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell Rep ; 18(1): 12-22, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28052242

RESUMO

Regulatory T (Treg) cells are critical for the shutdown of immune responses and have emerged as valuable targets of immunotherapies. Treg cells can rapidly proliferate; however, the homeostatic processes that limit excessive Treg cell numbers are poorly understood. Here, we show that, compared to conventional T cells, Treg cells have a high apoptosis rate ex vivo correlating with low c-FLIP expression. Treg-specific deletion of c-FLIP in mice resulted in fatal autoimmune disease of a scurfy-like phenotype characterized by absent peripheral Treg cells, activation of effector cells, multi-organ immune cell infiltration, and premature death. Surprisingly, blocking CD95L did not rescue Treg survival in vivo, suggesting additional survival functions of c-FLIP in Treg cells in addition to its classical role in the inhibition of death receptor signaling. Thus, our data reveal a central role for c-FLIP in Treg cell homeostasis and prevention of autoimmunity.


Assuntos
Autoimunidade , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Anticorpos Bloqueadores/farmacologia , Autoimunidade/efeitos dos fármacos , Inibidores de Caspase/farmacologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteína Ligante Fas/metabolismo , Deleção de Genes , Linfonodos/citologia , Camundongos , Fenótipo , Baço/citologia , Linfócitos T Reguladores/efeitos dos fármacos , Receptor fas/metabolismo
11.
Cell Rep ; 21(4): 994-1008, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29069606

RESUMO

Inflammatory bowel disease comprises a group of heterogeneous diseases characterized by chronic and relapsing mucosal inflammation. Alterations in microbiota composition have been proposed to contribute to disease development, but no uniform signatures have yet been identified. Here, we compare the ability of a diverse set of microbial communities to exacerbate intestinal inflammation after chemical damage to the intestinal barrier. Strikingly, genetically identical wild-type mice differing only in their microbiota composition varied strongly in their colitis susceptibility. Transfer of distinct colitogenic communities in gene-deficient mice revealed that they triggered disease via opposing pathways either independent or dependent on adaptive immunity, specifically requiring antigen-specific CD4+ T cells. Our data provide evidence for the concept that microbial communities may alter disease susceptibility via different immune pathways despite eventually resulting in similar host pathology. This suggests a potential benefit for personalizing IBD therapies according to patient-specific microbiota signatures.


Assuntos
Imunidade Adaptativa , Colite Ulcerativa/microbiologia , Microbioma Gastrointestinal , Imunidade Inata , Animais , Linfócitos T CD4-Positivos/imunologia , Colite Ulcerativa/imunologia , Feminino , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Cell Rep ; 19(11): 2319-2330, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28614717

RESUMO

Inflammasomes play a central role in regulating intestinal barrier function and immunity during steady state and disease. Because the discoveries of a passenger mutation and a colitogenic microbiota in the widely used caspase-1-deficient mouse strain have cast doubt on previously identified direct functions of caspase-1, we reassessed the role of caspase-1 in the intestine. To this end, we generated Casp1-/- and Casp11-/- mice and rederived them into an enhanced barrier facility to standardize the microbiota. We found that caspase-11 does not influence caspase-1-dependent processing of IL-18 in homeostasis and during DSS colitis. Deficiency of caspase-1, but not caspase-11, ameliorated the severity of DSS colitis independent of microbiota composition. Ablation of caspase-1 in intestinal epithelial cells was sufficient to protect mice against DSS colitis. Moreover, Casp1-/- mice developed fewer inflammation-induced intestinal tumors than control mice. These data show that canonical inflammasome activation controls caspase-1 activity, contributing to exacerbation of chemical-induced colitis.


Assuntos
Caspase 1/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Animais , Intestinos/patologia , Camundongos , Microbiota
13.
Oncotarget ; 7(16): 22605-22, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26981777

RESUMO

To date, virulent bacteria remain the basis of most bacteria mediated cancer therapies. For clinical application attenuation is required. However, this might result in a drastically lowered therapeutic capacity. Herein we argue that the E. coli probiotic Symbioflor-2, with a history of safe application may constitute a viable tumor therapeutic candidate. We demonstrate that Symbioflor-2 displays a highly specific tumor targeting ability as determined in murine CT26 and RenCa tumor models. The excellent specificity was ascribed to reduced levels of adverse colonization. A high safety standard was demonstrated in WT and Rag1-/- mice. Thus, Symbioflor-2 may represent an ideal tumor targeting delivery system for therapeutic molecules. Moreover, Symbioflor-2 was capable of inducing CT26 tumor clearance as result of an adjuvant effect on tumor specific CD8+ T cells analogous to the Salmonella variant SL7207. However, lower therapeutic efficacy against RenCa tumors suggested a generally reduced therapeutic potency for probiotics. Interestingly, concurrent depletion of Gr-1+ or Ly6G+ cells installed therapeutic efficacy equal to SL7207, thus highlighting the role of innate effector cells in restraining the anti-tumor effects of Symbioflor-2. Collectively, our findings argue for a strategy of safe strain application and a more sustainable use of bacteria as a delivery system for therapeutic molecules.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/farmacologia , Escherichia coli , Neoplasias , Probióticos/farmacologia , Animais , Sistemas de Liberação de Medicamentos/métodos , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA