Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 220(5): 873-881, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30629196

RESUMO

Antimicrobial resistance in Neisseria gonorrhoeae is a major issue of public health, and there is a critical need for the development of new antigonococcal strategies. In this study, we investigated the effectiveness of antimicrobial blue light (aBL; wavelength, 405 nm), an innovative nonpharmacological approach, for the inactivation of N. gonorrhoeae. Our findings indicated that aBL preferentially inactivated N. gonorrhoeae, including antibiotic-resistant strains, over human vaginal epithelial cells in vitro. Furthermore, no aBL-induced genotoxicity to the vaginal epithelial cells was observed at the radiant exposure used to inactivate N. gonorrhoeae. aBL also effectively inactivated N. gonorrhoeae that had attached to and invaded into the vaginal epithelial cells in their cocultures. No gonococcal resistance to aBL developed after 15 successive cycles of inactivation induced by subtherapeutic exposure to aBL. Endogenous aBL-activatable photosensitizing porphyrins in N. gonorrhoeae were identified and quantified using ultraperformance liquid chromatography, with coproporphyrin being the most abundant species in all N. gonorrhoeae strains studied. Singlet oxygen was involved in aBL inactivation of N. gonorrhoeae. Together, these findings show that aBL represents a potential potent treatment for antibiotic-resistant gonococcal infection.


Assuntos
Gonorreia/radioterapia , Neisseria gonorrhoeae/efeitos da radiação , Abetalipoproteinemia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos da radiação , Células Epiteliais/microbiologia , Feminino , Gonorreia/tratamento farmacológico , Humanos , Luz , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/crescimento & desenvolvimento , Oxigênio , Azida Sódica , Vagina/microbiologia
2.
Int J Mol Sci ; 20(1)2018 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-30583489

RESUMO

Space radiation and microgravity (µG) are two major environmental stressors for humans in space travel. One of the fundamental questions in space biology research is whether the combined effects of µG and exposure to cosmic radiation are interactive. While studies addressing this question have been carried out for half a century in space or using simulated µG on the ground, the reported results are ambiguous. For the assessment and management of human health risks in future Moon and Mars missions, it is necessary to obtain more basic data on the molecular and cellular responses to the combined effects of radiation and µG. Recently we incorporated a µG⁻irradiation system consisting of a 3D clinostat synchronized to a carbon-ion or X-ray irradiation system. Our new experimental setup allows us to avoid stopping clinostat rotation during irradiation, which was required in all other previous experiments. Using this system, human fibroblasts were exposed to X-rays or carbon ions under the simulated µG condition, and chromosomes were collected with the premature chromosome condensation method in the first mitosis. Chromosome aberrations (CA) were quantified by the 3-color fluorescent in situ hybridization (FISH) method. Cells exposed to irradiation under the simulated µG condition showed a higher frequency of both simple and complex types of CA compared to cells irradiated under the static condition by either X-rays or carbon ions.


Assuntos
Radioisótopos de Carbono/efeitos adversos , Aberrações Cromossômicas/efeitos da radiação , Fibroblastos/efeitos da radiação , Simulação de Ausência de Peso/efeitos adversos , Raios X/efeitos adversos , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Cromossomos Humanos Par 1/efeitos da radiação , Cromossomos Humanos Par 2/efeitos da radiação , Cromossomos Humanos Par 4/efeitos da radiação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Humanos , Hibridização in Situ Fluorescente
3.
Genes Chromosomes Cancer ; 55(8): 650-60, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27113385

RESUMO

Chromosomal translocations arise from misrejoining of DNA double strand breaks (DSBs) between loci located on two chromosomes. One current model suggests that spatial proximity of potential chromosomal translocation partners influences translocation probability. Ionizing radiation (IR) is a potent inducer of translocations. Accumulating evidence demonstrates that particle irradiation more frequently causes translocations compared with X-ray irradiation. This observation has led to the hypothesis that the high frequency of translocations after particle irradiation may be due to the formation of DSBs at chromosome boundaries along the particle track, because such DSBs can be misrejoined between distinct chromosomes. In this study, we simultaneously visualized the site of IR-induced DSBs and chromosome position by combining Immunofluorescence and fluorescence in situ hybridization. Importantly, the frequency of γH2AX foci at the chromosome boundary of chromosome 1 after carbon-ion irradiation was >4-fold higher than that after X-ray irradiation. This observation is consistent with the idea that particle irradiation generates DSBs at the boundaries of two chromosomes along the track. Further, we showed that resolution of γH2AX foci at chromosome boundaries is prevented by inhibition of DNA-PKcs activity, indicating that the DSB repair is NHEJ-dependent. Finally, we found that γH2AX foci at chromosome boundaries after carbon-ion irradiation contain DSBs undergoing DNA-end resection, which promotes repair utilizing microhomology mediated end-joining during translocation. Taken together, our study suggests that the frequency of DSB formation at chromosome boundaries is associated with the incidence of chromosomal translocations, supporting the notion that the spatial proximity between breaks is an important factor in translocation formation. © 2016 Wiley Periodicals, Inc.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Histonas/genética , Translocação Genética/efeitos da radiação , Radioisótopos de Carbono , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 1/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Fibroblastos/efeitos da radiação , Humanos , Hibridização in Situ Fluorescente , Radiação Ionizante , Raios X
4.
Angiogenesis ; 17(2): 419-27, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24201897

RESUMO

Radiation therapy after lymph node dissection increases the risk of developing painful and incurable lymphedema in breast cancer patients. Lymphedema occurs when lymphatic vessels become unable to maintain proper fluid balance. The sensitivity of lymphatic endothelial cells (LECs) to ionizing radiation has not been reported to date. Here, the radiosensitivity of LECs in vitro has been determined using clonogenic survival assays. The ability of various growth factors to alter LEC radiosensitivity was also examined. Vascular endothelial growth factor (VEGF)-C enhanced radiosensitivity when LECs were treated prior to radiation. VEGF-C-treated LECs exhibited higher levels of entry into the cell cycle at the time of radiation, with a greater number of cells in the S and G2/M phases. These LECs showed higher levels of γH2A.X-an indicator of DNA damage-after radiation. VEGF-C did not increase cell death as a result of radiation. Instead, it increased the relative number of quiescent LECs. These data suggest that abundant VEGF-C or lymphangiogenesis may predispose patients to radiation-induced lymphedema by impairing lymphatic vessel repair through induction of LEC quiescence.


Assuntos
Células Endoteliais/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Fator C de Crescimento do Endotélio Vascular/farmacologia , Adulto , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Células Endoteliais/efeitos dos fármacos , Humanos , Linfangiogênese/efeitos dos fármacos , Substâncias Protetoras/farmacologia
5.
Radiat Res ; 202(2): 161-176, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954556

RESUMO

Numerous dose rate effects have been described over the past 6-7 decades in the radiation biology and radiation oncology literature depending on the dose rate range being discussed. This review focuses on the impact and understanding of altering dose rates in the context of radiation therapy, but does not discuss dose rate effects as relevant to radiation protection. The review starts with a short historic review of early studies on dose rate effects, considers mechanisms thought to underlie dose rate dependencies, then discusses some current issues in clinical findings with altered dose rates, the importance of dose rate in brachytherapy, and the current timely topic of the use of very high dose rates, so-called FLASH radiotherapy. The discussion includes dose rate effects in vitro in cultured cells, in in vivo experimental systems and in the clinic, including both tumors and normal tissues. Gaps in understanding dose rate effects are identified, as are opportunities for improving clinical use of dose rate modulation.


Assuntos
Relação Dose-Resposta à Radiação , Humanos , Animais , História do Século XX , Braquiterapia/história , Braquiterapia/métodos , Dosagem Radioterapêutica , Neoplasias/radioterapia , História do Século XXI , Radiobiologia/história
6.
Int J Radiat Biol ; 100(10): 1393-1404, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39058334

RESUMO

PURPOSE: Epidemiological studies of stochastic radiation health effects such as cancer, meant to estimate risks of the adverse effects as a function of radiation dose, depend largely on estimates of the radiation doses received by the exposed group under study. Those estimates are based on dosimetry that always has uncertainty, which often can be quite substantial. Studies that do not incorporate statistical methods to correct for dosimetric uncertainty may produce biased estimates of risk and incorrect confidence bounds on those estimates. This paper reviews commonly used statistical methods to correct radiation risk regressions for dosimetric uncertainty, with emphasis on some newer methods. We begin by describing the types of dose uncertainty that may occur, including those in which an uncertain value is shared by part or all of a cohort, and then demonstrate how these sources of uncertainty arise in radiation dosimetry. We briefly describe the effects of different types of dosimetric uncertainty on risk estimates, followed by a description of each method of adjusting for the uncertainty. CONCLUSIONS: Each of the method has strengths and weaknesses, and some methods have limited applicability. We describe the types of uncertainty to which each method can be applied and its pros and cons. Finally, we provide summary recommendations and touch briefly on suggestions for further research.


Assuntos
Doses de Radiação , Humanos , Incerteza , Medição de Risco , Modelos Estatísticos , Radiometria/métodos , Relação Dose-Resposta à Radiação
7.
Int J Radiat Biol ; 100(5): 724-735, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38442236

RESUMO

PURPOSE: Radiation-induced bystander effect (RIBE) frequently is seen as DNA damage in unirradiated bystander cells, but the repair processes initiated in response to that DNA damage are not well understood. RIBE-mediated formation of micronuclei (MN), a biomarker of persistent DNA damage, was previously observed in bystander normal fibroblast (AG01522) cells, but not in bystander human chondrosarcoma (HTB94) cells. The molecular mechanisms causing this disparity are not clear. Herein, we investigate the role of DNA repair in the bystander responses of the two cell lines. METHODS: Cells were irradiated with X-rays and immediately co-cultured with un-irradiated cells using a trans-well insert system in which they share the same medium. The activation of DNA damage response (DDR) proteins was detected by immunofluorescence staining or Western blotting. MN formation was examined by the cytokinesis-block MN assay, which is a robust method to detect persistent DNA damage. RESULTS: Immunofluorescent foci of γH2AX and 53BP1, biomarkers of DNA damage and repair, revealed a greater capacity for DNA repair in HTB94 cells than in AG01522 cells in both irradiated and bystander populations. Autophosphorylation of ATR at the threonine 1989 site was expressed at a greater level in HTB94 cells compared to AG01522 cells at the baseline and in response to hydroxyurea treatment or exposure to 1 Gy of X-rays. An inhibitor of ATR, but not of ATM, promoted MN formation in bystander HTB94 cells. In contrast, no effect of either inhibitor was observed in bystander AG01522 cells, indicating that ATR signaling might be a pivotal pathway to preventing the MN formation in bystander HTB94 cells. Supporting this idea, we found an ATR-dependent increase in the fractions of bystander HTB94 cells with pRPA2 S33 and RAD51 foci. A blocker of RAD51 facilitated MN formation in bystander HTB94 cells. CONCLUSION: Our results indicate that HTB94 cells were likely more efficient in DNA repair than AG01522 cells, specifically via ATR signaling, which inhibited the bystander signal-induced MN formation. This study highlights the significance of DNA repair efficiency in bystander cell responses.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Efeito Espectador , Condrossarcoma , Reparo do DNA , Rad51 Recombinase , Transdução de Sinais , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Efeito Espectador/efeitos da radiação , Linhagem Celular Tumoral , Condrossarcoma/metabolismo , Condrossarcoma/radioterapia , Dano ao DNA , Histonas/metabolismo , Rad51 Recombinase/metabolismo
8.
J Am Coll Radiol ; 20(2): 251-264, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36130692

RESUMO

US physicians in multiple specialties who order or conduct radiological procedures lack formal radiation science education and thus sometimes order procedures of limited benefit or fail to order what is necessary. To this end, a multidisciplinary expert group proposed an introductory broad-based radiation science educational program for US medical schools. Suggested preclinical elements of the curriculum include foundational education on ionizing and nonionizing radiation (eg, definitions, dose metrics, and risk measures) and short- and long-term radiation-related health effects as well as introduction to radiology, radiation therapy, and radiation protection concepts. Recommended clinical elements of the curriculum would impart knowledge and practical experience in radiology, fluoroscopically guided procedures, nuclear medicine, radiation oncology, and identification of patient subgroups requiring special considerations when selecting specific ionizing or nonionizing diagnostic or therapeutic radiation procedures. Critical components of the clinical program would also include educational material and direct experience with patient-centered communication on benefits of, risks of, and shared decision making about ionizing and nonionizing radiation procedures and on health effects and safety requirements for environmental and occupational exposure to ionizing and nonionizing radiation. Overarching is the introduction to evidence-based guidelines for procedures that maximize clinical benefit while limiting unnecessary risk. The content would be further developed, directed, and integrated within the curriculum by local faculties and would address multiple standard elements of the Liaison Committee on Medical Education and Core Entrustable Professional Activities for Entering Residency of the Association of American Medical Colleges.


Assuntos
Proteção Radiológica , Radiologia , Humanos , Faculdades de Medicina , Multimídia , Radiologia/educação , Currículo
9.
Phys Med Biol ; 67(23)2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36172820

RESUMO

The effects of realistic, deep space radiation environments on neuronal function remain largely unexplored.In silicomodeling studies of radiation-induced neuronal damage provide important quantitative information about physico-chemical processes that are not directly accessible through radiobiological experiments. Here, we present the first nano-scale computational analysis of broad-spectrum galactic cosmic ray irradiation in a realistic neuron geometry. We constructed thousands ofin silicorealizations of a CA1 pyramidal neuron, each with over 3500 stochastically generated dendritic spines. We simulated the entire 33 ion-energy beam spectrum currently in use at the NASA Space Radiation Laboratory galactic cosmic ray simulator (GCRSim) using the TOol for PArticle Simulation (TOPAS) and TOPAS-nBio Monte Carlo-based track structure simulation toolkits. We then assessed the resulting nano-scale dosimetry, physics processes, and fluence patterns. Additional comparisons were made to a simplified 6 ion-energy spectrum (SimGCRSim) also used in NASA experiments. For a neuronal absorbed dose of 0.5 Gy GCRSim, we report an average of 250 ± 10 ionizations per micrometer of dendritic length, and an additional 50 ± 10, 7 ± 2, and 4 ± 2 ionizations per mushroom, thin, and stubby spine, respectively. We show that neuronal energy deposition by proton andα-particle tracks declines approximately hyperbolically with increasing primary particle energy at mission-relevant energies. We demonstrate an inverted exponential relationship between dendritic segment irradiation probability and neuronal absorbed dose for each ion-energy beam. We also find that there are no significant differences in the average physical responses between the GCRSim and SimGCRSim spectra. To our knowledge, this is the first nano-scale simulation study of a realistic neuron geometry using the GCRSim and SimGCRSim spectra. These results may be used as inputs to theoretical models, aid in the interpretation of experimental results, and help guide future study designs.


Assuntos
Radiação Cósmica , Radiação Cósmica/efeitos adversos , Radiobiologia/métodos , Simulação por Computador , Método de Monte Carlo , Neurônios
10.
Int J Radiat Biol ; : 1-11, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35394402

RESUMO

Purpose: This study aimed to evaluate the radiation-induced direct and bystander (BYS) responses of mesenchymal stem cells (MSCs) and to characterize these cells radiobiologically.Methods and materials: MSCs were irradiated (IR) and parameters related to DNA damage and cellular signaling were verified in a dose range from 0.5 to 15 Gy; also a transwell insert co-culture system was used to study medium-mediated BYS effects.Results: The main effects on directly IR cells were seen at doses higher than 6 Gy: induction of cell death, cell cycle arrest, upregulation of p21, and alteration of redox status. Irrespective of a specific dose, induction of micronuclei formation, H2AX phosphorylation, and decreased Akt expression also occurred. Thus, mTOR expression, cell senescence, nitric oxide generation, and calcium levels, in general were not significantly modulated by radiation. Data from the linear-quadratic model showed a high alpha/beta ratio, which is consistent with a more exponential survival curve. BYS effects from the unirradiated MSCs placed into companion wells with the directly IR cells, were not observed.Conclusions: The results can be interpreted as a positive outcome, meaning that the radiation damage is restricted to the directed IR MSCs not leading to off-target cell responses.

11.
Sci Adv ; 8(50): eabn6025, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36525492

RESUMO

Fatigue is a common adverse effect of external beam radiation therapy in cancer patients. Mechanisms causing radiation fatigue remain unclear, although linkage to skin irradiation has been suggested. ß-Endorphin, an endogenous opioid, is synthesized in skin following genotoxic ultraviolet irradiation and acts systemically, producing addiction. Exogenous opiates with the same receptor activity as ß-endorphin can cause fatigue. Using rodent models of radiation therapy, exposing tails and sparing vital organs, we tested whether skin-derived ß-endorphin contributes to radiation-induced fatigue. Over a 6-week radiation regimen, plasma ß-endorphin increased in rats, paralleled by opiate phenotypes (elevated pain thresholds, Straub tail) and fatigue-like behavior, which was reversed in animals treated by the opiate antagonist naloxone. Mechanistically, all these phenotypes were blocked by opiate antagonist treatment and were undetected in either ß-endorphin knockout mice or mice lacking keratinocyte p53 expression. These findings implicate skin-derived ß-endorphin in systemic effects of radiation therapy. Opioid antagonism may warrant testing in humans as treatment or prevention of radiation-induced fatigue.

12.
Int J Radiat Biol ; 98(4): 795-821, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34669549

RESUMO

BACKGROUND: Epidemiologic studies of radiation-exposed populations form the basis for human safety standards. They also help shape public health policy and evidence-based health practices by identifying and quantifying health risks of exposure in defined populations. For more than a century, epidemiologists have studied the consequences of radiation exposures, yet the health effects of low levels delivered at a low-dose rate remain equivocal. MATERIALS AND METHODS: The Million Person Study (MPS) of U.S. Radiation Workers and Veterans was designed to examine health effects following chronic exposures in contrast with brief exposures as experienced by the Japanese atomic bomb survivors. Radiation associations for rare cancers, intakes of radionuclides, and differences between men and women are being evaluated, as well as noncancers such as cardiovascular disease and conditions such as dementia and cognitive function. The first international symposium, held November 6, 2020, provided a broad overview of the MPS. Representatives from four U.S. government agencies addressed the importance of this research for their respective missions: U.S. Department of Energy (DOE), the Centers for Disease Control and Prevention (CDC), the U.S. Department of Defense (DOD), and the National Aeronautics and Space Administration (NASA). The major components of the MPS were discussed and recent findings summarized. The importance of radiation dosimetry, an essential feature of each MPS investigation, was emphasized. RESULTS: The seven components of the MPS are DOE workers, nuclear weapons test participants, nuclear power plant workers, industrial radiographers, medical radiation workers, nuclear submariners, other U.S. Navy personnel, and radium dial painters. The MPS cohorts include tens of thousands of workers with elevated intakes of alpha particle emitters for which organ-specific doses are determined. Findings to date for chronic radiation exposure suggest that leukemia risk is lower than after acute exposure; lung cancer risk is much lower and there is little difference in risks between men and women; an increase in ischemic heart disease is yet to be seen; esophageal cancer is frequently elevated but not myelodysplastic syndrome; and Parkinson's disease may be associated with radiation exposure. CONCLUSIONS: The MPS has provided provocative insights into the possible range of health effects following low-level chronic radiation exposure. When the 34 MPS cohorts are completed and combined, a powerful evaluation of radiation-effects will be possible. This final article in the MPS special issue summarizes the findings to date and the possibilities for the future. A National Center for Radiation Epidemiology and Biology is envisioned.


Assuntos
Armas Nucleares , Exposição à Radiação , Biologia , Feminino , Humanos , Masculino , Centrais Nucleares , Exposição à Radiação/efeitos adversos , Radiometria
13.
Int J Radiat Biol ; 97(6): 804-814, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33211576

RESUMO

The overall aim of this contribution to the 'Second Bill Morgan Memorial Special Issue' is to provide a high-level review of a recent report developed by a Committee for the National Council on Radiation Protection and Measurements (NCRP) titled 'Approaches for Integrating Information from Radiation Biology and Epidemiology to Enhance Low-Dose Health Risk Assessment'. It derives from previous NCRP Reports and Commentaries that provide the case for integrating data from radiation biology studies (available and proposed) with epidemiological studies (also available and proposed) to develop Biologically-Based Dose-Response (BBDR) models. In this review, it is proposed for such models to leverage the adverse outcome pathways (AOP) and key events (KE) approach for better characterizing radiation-induced cancers and circulatory disease (as the example for a noncancer outcome). The review discusses the current state of knowledge of mechanisms of carcinogenesis, with an emphasis on radiation-induced cancers, and a similar discussion for circulatory disease. The types of the various informative BBDR models are presented along with a proposed generalized BBDR model for cancer and a more speculative one for circulatory disease. The way forward is presented in a comprehensive discussion of the research needs to address the goal of enhancing health risk assessment of exposures to low doses of radiation. The use of an AOP/KE approach for developing a mechanistic framework for BBDR models of radiation-induced cancer and circulatory disease is considered to be a viable one based upon current knowledge of the mechanisms of formation of these adverse health outcomes and the available technical capabilities and computational advances. The way forward for enhancing low-dose radiation risk estimates will require there to be a tight integration of epidemiology data and radiation biology information to meet the goals of relevance and sensitivity of the adverse health outcomes required for overall health risk assessment at low doses and dose rates.


Assuntos
Rotas de Resultados Adversos , Medição de Risco , Humanos , Doses de Radiação , Proteção Radiológica , Radiobiologia
14.
Aging (Albany NY) ; 13(24): 25607-25642, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34968192

RESUMO

Aging is accompanied by osteopenia, characterized by reduced bone formation and increased bone resorption. Osteocytes, the terminally differentiated osteoblasts, are regulators of bone homeostasis, and parathyroid hormone (PTH) receptor (PPR) signaling in mature osteoblasts/osteocytes is essential for PTH-driven anabolic and catabolic skeletal responses. However, the role of PPR signaling in those cells during aging has not been investigated. The aim of this study was to analyze the role of PTH signaling in mature osteoblasts/osteocytes during aging. Mice lacking PPR in osteocyte (Dmp1-PPRKO) display an age-dependent osteopenia characterized by a significant decrease in osteoblast activity and increase in osteoclast number and activity. At the molecular level, the absence of PPR signaling in mature osteoblasts/osteocytes is associated with an increase in serum sclerostin and a significant increase in osteocytes expressing 4-hydroxy-2-nonenals, a marker of oxidative stress. In Dmp1-PPRKO mice there was an age-dependent increase in p16Ink4a/Cdkn2a expression, whereas it was unchanged in controls. In vitro studies demonstrated that PTH protects osteocytes from oxidative stress-induced cell death. In summary, we reported that PPR signaling in osteocytes is important for protecting the skeleton from age-induced bone loss by restraining osteoclast's activity and protecting osteocytes from oxidative stresses.


Assuntos
Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Doenças Ósseas Metabólicas/patologia , Reabsorção Óssea/metabolismo , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Homeostase/efeitos dos fármacos , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteócitos/metabolismo , Osteoporose/metabolismo
15.
Photochem Photobiol Sci ; 9(12): 1634-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20931137

RESUMO

Dyes that bind to DNA, such as Hoechst 33342, are commonly used to visualize chromatin in live cells by fluorescence microscopy. A caveat is that the probes themselves should not perturb cellular responses and under normal conditions the dyes are generally non-toxic. However, researchers are increasingly using computerized time-lapse microscopy (CTLM), where cells stained with fluorescent dyes are often imaged frequently over a period of several days, to follow cellular responses in real time. Little is currently known about possible toxicity of fluorescent DNA dyes under CTLM conditions. In this study we demonstrate that the common live-cell DNA stain Hoechst 33342 can cause apoptosis under CTLM conditions. Although toxicity is evident at long times in the absence of imaging at high dye concentrations, phototoxicity from repeated excitation of the dye in the imaging process is dominant. We show that phototoxicity is a function of the product of light fluence and dye concentration, irrespective of irradiance, frequency and total number of scans. Thus, phototoxicity can be prevented by a combination of dye concentration and imaging procedure that is below this threshold. These quantitative data can be used as a guide to others performing time-lapse microscopy studies with this common live-cell DNA stain and serves as a caution for researchers when using other fluorescent stains under CTLM conditions.


Assuntos
Benzimidazóis/toxicidade , Corantes Fluorescentes/toxicidade , Animais , Apoptose , Benzimidazóis/química , Linhagem Celular , Cromatina/química , DNA/química , Corantes Fluorescentes/química , Microscopia de Fluorescência , Ratos , Fatores de Tempo , Raios Ultravioleta
16.
Radiat Res ; 193(1): 82-87, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31738663

RESUMO

Radiation-resistant hypoxic tumor areas continue to present a major limitation for successful tumor treatment. To overcome this radiation resistance, an oxygen-independent treatment is proposed using UVC-emitting LuPO4:Pr3+ nanoparticles (NPs) and X rays. The uptake of the NPs as well as their effect on cell proliferation was investigated on A549 lung cancer cells by using inverted time-lapse microscopy and transmission electron microscopy. Furthermore, cytotoxicity of the combined treatment of X rays and LuPO4:Pr3+ NPs was assessed under normoxic and hypoxic conditions using the colony formation assay. Transmission electron microscopy (TEM) images showed no NP uptake after 3 h, whereas after 24 h incubation an uptake of NPs was documented. LuPO4:Pr3+ NPs alone caused a concentration-independent cell growth delay within the first 60 h of incubation. The combined treatment with UVC-emitting NPs and X rays reduced the radiation resistance of hypoxic cells by a factor of two to the level of cells under normoxic condition. LuPO4:Pr3+ NPs cause an early growth delay but no cytotoxicity for the tested concentration. The combination of these NPs with X rays increases cytotoxicity of normoxic and hypoxic cancer cells. Hypoxic cells become sensitized to normoxic cell levels.


Assuntos
Lutécio , Nanopartículas , Praseodímio , Tolerância a Radiação/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação , Raios Ultravioleta , Células A549 , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Humanos , Tolerância a Radiação/efeitos da radiação
17.
Neurosci Res ; 160: 11-24, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31711782

RESUMO

The effects of X-irradiation on developing neurons and their functions are unclear. We used primary cultures of mouse hippocampal neurons to investigate the effects of X-irradiation on cell death in developing neurons by analyzing caspase-3, MAP2 and DAPI-labeled cells, and the phenotypes and function of surviving neurons, by examining GAD67-positive cells as a GABAergic marker, and the synaptic markers synapsin 1, drebrin and PSD-95 through its maturation. One-day in vitro (DIV 1) cells were exposed to 0.5 Gy or 1 Gy of X-rays. A significant increase in the percentage of activated caspase-3, a decrease in the number of MAP2/DAPI-positive cells and change in the percentage of GAD67 positive neurons, compared with sham controls, were found 6 days after 1 Gy and 13 days after 0.5 Gy of X-rays. The expression of PSD-95 and drebrin, as well as drebrin clusters, in the remaining neurons was decreased at DIV 21, in both 0.5 Gy and on 1 Gy-irradiation there was a reduced number of dendritic intersection as well. Together, our findings show that 0.5 Gy and 1 Gy of X-irradiation at DIV 1 not only causes neuronal cell death but elicits an increase in the percentage of inhibitory neurons, changes in the dendrites and decrease in expression of important synaptic proteins in the surviving neurons at maturity 3 weeks after exposure.


Assuntos
Hipocampo , Neurônios , Animais , Células Cultivadas , Proteína 4 Homóloga a Disks-Large , Camundongos , Neuropeptídeos , Fenótipo , Sinapsinas , Raios X
18.
Phys Med Biol ; 65(8): 085015, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32101803

RESUMO

Monte Carlo (MC) track structure simulation tools are commonly used for predicting radiation induced DNA damage by modeling the physical and chemical reactions at the nanometer scale. However, the outcome of these MC simulations is particularly sensitive to the adopted parameters which vary significantly across studies. In this study, a previously developed full model of nuclear DNA was used to describe the DNA geometry. The TOPAS-nBio MC toolkit was used to investigate the impact of physics and chemistry models as well as three key parameters (the energy threshold for direct damage, the chemical stage time length, and the probability of damage between hydroxyl radical reactions with DNA) on the induction of DNA damage. Our results show that the difference in physics and chemistry models alone can cause differences up to 34% and 16% in the DNA double strand break (DSB) yield, respectively. Additionally, changing the direct damage threshold, chemical stage length, and hydroxyl damage probability can cause differences of up to 28%, 51%, and 71% in predicted DSB yields, respectively, for the configurations in this study.


Assuntos
Dano ao DNA , Modelos Biológicos , Prótons , Núcleo Celular/genética , Núcleo Celular/efeitos da radiação , Método de Monte Carlo
19.
Radiat Res ; 194(1): 9-21, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32401689

RESUMO

The cellular response to ionizing radiation continues to be of significant research interest in cancer radiotherapy, and DNA is recognized as the critical target for most of the biologic effects of radiation. Incident particles can cause initial DNA damages through physical and chemical interactions within a short time scale. Initial DNA damages can undergo repair via different pathways available at different stages of the cell cycle. The misrepair of DNA damage results in genomic rearrangement and causes mutations and chromosome aberrations, which are drivers of cell death. This work presents an integrated study of simulating cell response after proton irradiation with energies of 0.5-500 MeV (LET of 60-0.2 keV/µm). A model of a whole nucleus with fractal DNA geometry was implemented in TOPAS-nBio for initial DNA damage simulations. The default physics and chemistry models in TOPAS-nBio were used to describe interactions of primary particles, secondary particles, and radiolysis products within the nucleus. The initial DNA double-strand break (DSB) yield was found to increase from 6.5 DSB/Gy/Gbp at low-linear energy transfer (LET) of 0.2 keV/µm to 21.2 DSB/Gy/Gbp at high LET of 60 keV/µm. A mechanistic repair model was applied to predict the characteristics of DNA damage repair and dose response of chromosome aberrations. It was found that more than 95% of the DSBs are repaired within the first 24 h and the misrepaired DSB fraction increases rapidly with LET and reaches 15.8% at 60 keV/µm with an estimated chromosome aberration detection threshold of 3 Mbp. The dicentric and acentric fragment yields and the dose response of micronuclei formation after proton irradiation were calculated and compared with experimental results.


Assuntos
Modelos Biológicos , Método de Monte Carlo , Prótons , Aberrações Cromossômicas/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Transferência Linear de Energia/efeitos da radiação
20.
Radiat Res ; 194(5): 452-464, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33045077

RESUMO

The limited impact of treatments for COVID-19 has stimulated several phase 1 clinical trials of whole-lung low-dose radiation therapy (LDRT; 0.3-1.5 Gy) that are now progressing to phase 2 randomized trials worldwide. This novel but unconventional use of radiation to treat COVID-19 prompted the National Cancer Institute, National Council on Radiation Protection and Measurements and National Institute of Allergy and Infectious Diseases to convene a workshop involving a diverse group of experts in radiation oncology, radiobiology, virology, immunology, radiation protection and public health policy. The workshop was held to discuss the mechanistic underpinnings, rationale, and preclinical and emerging clinical studies, and to develop a general framework for use in clinical studies. Without refuting or endorsing LDRT as a treatment for COVID-19, the purpose of the workshop and this review is to provide guidance to clinicians and researchers who plan to conduct preclinical and clinical studies, given the limited available evidence on its safety and efficacy.


Assuntos
Infecções por Coronavirus/radioterapia , Pneumonia Viral/radioterapia , Doses de Radiação , Animais , COVID-19 , Ensaios Clínicos como Assunto , Humanos , Pandemias , Dosagem Radioterapêutica , Risco , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA