Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931722

RESUMO

This study aimed to fabricate and characterize a novel colorimetric indicator designed to detect ammonia (NH3) and monitor meat freshness. The sensing platform was constructed using electrospun nanofibers made from polylactic acid (PLA), which were then impregnated with anthocyanins as a natural pH-sensitive dye, extracted from red cabbage. This research involved investigating the relationship between the various concentrations of anthocyanins and the colorimetric platform's efficiency when exposed to ammonia vapor. Scanning electron microscope (SEM) results were used to examine the morphology and structure of the nanofiber mats before and after the dip-coating process. The study also delved into the selectivity of the indicator when exposed to various volatile organic compounds (VOCs) and their stability under extreme humidity levels. Furthermore, the platform's sensitivity was evaluated as it encountered ammonia (NH3) in concentrations ranging from 1 to 100 ppm, with varying dye concentrations. The developed indicator demonstrated an exceptional detection limit of 1 ppm of MH3 within just 30 min, making it highly sensitive to subtle changes in gas concentration. The indicator proved effective in assessing meat freshness by detecting spoilage levels in beef over time. It reliably identified spoilage after 10 h and 7 days, corresponding to bacterial growth thresholds (107 CFU/mL), both at room temperature and in refrigerated environments, respectively. With its simple visual detection mechanism, the platform offered a straightforward and user-friendly solution for consumers and industry professionals alike to monitor packaged beef freshness, enhancing food safety and quality assurance.


Assuntos
Amônia , Colorimetria , Embalagem de Alimentos , Carne Vermelha , Colorimetria/métodos , Embalagem de Alimentos/métodos , Amônia/química , Amônia/análise , Bovinos , Carne Vermelha/análise , Carne Vermelha/microbiologia , Animais , Nanofibras/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Poliésteres/química , Antocianinas/química , Carne/análise , Carne/microbiologia
2.
Sensors (Basel) ; 19(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795081

RESUMO

A nanocomposite of cross-linked bacterial cellulose-amino graphene/polyaniline (CLBC-AmG/PANI) was synthesized by covalent interaction of amino-functionalized graphene (AmG) AmG and bacterial cellulose (BC) via one step esterification, and then the aniline monomer was grown on the surface of CLBC-AmG through in situ chemical polymerization. The morphological structure and properties of the samples were characterized by using scanning electron microscopy (SEM), and thermal gravimetric analyzer (TGA). The CLBC-AmG/PANI showed good electrical-resistance response toward carbon dioxide (CO2) at room temperature, compared to the BC/PANI nanopaper composites. The CLBC-AmG/PANI sensor possesses high sensitivity and fast response characteristics over CO2 concentrations ranging from 50 to 2000 ppm. This process presents an extremely suitable candidate for developing novel nanomaterials sensors owing to easy fabrication and efficient sensing performance.

3.
Int J Biol Macromol ; 232: 123446, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36708888

RESUMO

This research aimed to evaluate the physicochemical and biocidal properties of chitosan films obtained through the solvent casting method using two different molecular weights, and thermally treated for an extended time (3 weeks) at 70 °C under vacuum condition (RH 0 %). The effect of storage time (for 30 and 180 days) under ambient conditions (23 °C and RH 40 %) on the properties of heat-treated cast films and their biocidal effectiveness was also assessed. FTIR-ATR, TGA and XRD of resulting films were analyzed to explore the dependency of antibacterial performance on the alteration in molecular and chemical structure. The results demonstrated that the solubility of treated films at 70 °C was proportionally reduced, resulting from the reduction of protonated amines and an increase in crystallinity. Likewise, increasing storage time led to a significant lowering in the solubilization of cast films. It was found that the solubilized fraction of chitosan cast films is the active fraction with the biocide behavior that can act against bacteria. In addition, the effectiveness of migrated chitosan was examined against the natural flora of pasteurized milk, such as Paenibacillus and Pseudomonas fluorescens. The results showed that cast films obtained from chitosan with lower molecular weight caused a reduction in the total count of viable cells without a significant effect on the properties of milk.


Assuntos
Quitosana , Animais , Quitosana/farmacologia , Quitosana/química , Leite , Temperatura Alta , Embalagem de Alimentos/métodos , Antibacterianos/farmacologia , Antibacterianos/química
4.
Sci Rep ; 10(1): 14367, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873860

RESUMO

In this study, we propose a novel sensitive solid-based immunosensor developed on a plasmonic nanopaper platform for the detection of Escherichia coli (E. coli) bacteria. This plasmonic nanopaper that comprises of carboxylated bacterial cellulose (CBC) impregnated with gold nanoparticles (AuNP-CBC), employed as a quencher and a sustainable functionalized platform to be conjugated with protein A. Thus, the conjugated protein A allows the aligned linkage of EAb-QD (anti-E. coli conjugated quantum dot) and EAb-AF (anti-E. coli conjugated Alexa Fluor 488). Interestingly, once E. coli was captured by the AuNP-CBC/EAb-QD or AuNP-CBC/EAb-AF, the energy transfer from the QD or Alexa Fluor fluorophores is triggered due to the conformational change in the antibody structure and this, in turn, causes a decrease in the distance between fluorophores and the quencher nanopaper and, therefore diminishing their photoluminescence. The immunosensors performed successfully to recognize E. coli at concentrations as low as 50 CFU mL-1 in the standard buffer. The examined functionality of the immunosensors in a real matrix such as chicken extract and lettuce juice demonstrated a highly efficient response while QD is the main fluorophore with a limit of detection around 100 CFU mL-1.


Assuntos
Anticorpos Antibacterianos/imunologia , Técnicas Biossensoriais/métodos , Celulose/química , Escherichia coli/imunologia , Transferência Ressonante de Energia de Fluorescência/métodos , Immunoblotting/métodos , Staphylococcus aureus/imunologia , Anticorpos Antibacterianos/química , Ouro/química , Testes Imunológicos/métodos , Limite de Detecção , Nanopartículas Metálicas/química , Pontos Quânticos/química , Proteína Estafilocócica A/química
5.
RSC Adv ; 9(70): 41240-41247, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-35540051

RESUMO

This article describes the preparation and characterization of amino-functionalized graphene (AmG)/polyaniline (PANI)/poly(methyl methacrylate) (PMMA) nanofiber mats along with the efficiency of these nanofiber composites as a new material for sensing carbon dioxide (CO2) gas. The surfaces of the PMMA nanofibers were treated at room temperature by ultraviolet (UV) radiation. AmG/PANI was then deposited on the surfaces of the PMMA nanofibers via chemical oxidative polymerization. It was concluded that UV radiation reduced the hydrophobicity of the PMMA surface through introducing oxidized groups onto the surface. The electrical response of the gas sensor based on the composite nanofibers was investigated at room temperature using various concentrations of CO2 gas. Compared to the PANI/PMMA nanofibers, the AmG/PANI nanofiber composites displayed a better electrical resistance response to CO2 at room temperature; the AmG/PANI nanofiber composites exhibited higher sensitivity and faster response times under the same conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA