Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Genes Dev ; 37(17-18): 844-860, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37821106

RESUMO

SARS CoV-2 nonstructural protein 1 (Nsp1) is the major pathogenesis factor that inhibits host translation using a dual strategy of impairing initiation and inducing endonucleolytic cleavage of cellular mRNAs. To investigate the mechanism of cleavage, we reconstituted it in vitro on ß-globin, EMCV IRES, and CrPV IRES mRNAs that use unrelated initiation mechanisms. In all instances, cleavage required Nsp1 and only canonical translational components (40S subunits and initiation factors), arguing against involvement of a putative cellular RNA endonuclease. Requirements for initiation factors differed for these mRNAs, reflecting their requirements for ribosomal attachment. Cleavage of CrPV IRES mRNA was supported by a minimal set of components consisting of 40S subunits and eIF3g's RRM domain. The cleavage site was located in the coding region 18 nt downstream from the mRNA entrance, indicating that cleavage occurs on the solvent side of the 40S subunit. Mutational analysis identified a positively charged surface on Nsp1's N-terminal domain (NTD) and a surface above the mRNA-binding channel on eIF3g's RRM domain that contain residues essential for cleavage. These residues were required for cleavage on all three mRNAs, highlighting general roles of the Nsp1 NTD and eIF3g's RRM domain in cleavage per se, irrespective of the mode of ribosomal attachment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , RNA Mensageiro/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas
2.
Cell ; 153(5): 1108-19, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23706745

RESUMO

Eukaryotic translation initiation begins with assembly of a 43S preinitiation complex. First, methionylated initiator methionine transfer RNA (Met-tRNAi(Met)), eukaryotic initiation factor (eIF) 2, and guanosine triphosphate form a ternary complex (TC). The TC, eIF3, eIF1, and eIF1A cooperatively bind to the 40S subunit, yielding the 43S preinitiation complex, which is ready to attach to messenger RNA (mRNA) and start scanning to the initiation codon. Scanning on structured mRNAs additionally requires DHX29, a DExH-box protein that also binds directly to the 40S subunit. Here, we present a cryo-electron microscopy structure of the mammalian DHX29-bound 43S complex at 11.6 Å resolution. It reveals that eIF2 interacts with the 40S subunit via its α subunit and supports Met-tRNAi(Met) in an unexpected P/I orientation (eP/I). The structural core of eIF3 resides on the back of the 40S subunit, establishing two principal points of contact, whereas DHX29 binds around helix 16. The structure provides insights into eukaryote-specific aspects of translation, including the mechanism of action of DHX29.


Assuntos
Mamíferos/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Helicases/química , RNA Ribossômico/química , Ribonucleoproteínas/química , Animais , Sequência de Bases , Sistema Livre de Células , Microscopia Crioeletrônica , Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Mamíferos/genética , Modelos Moleculares , Dados de Sequência Molecular , RNA Helicases/metabolismo , RNA Ribossômico/metabolismo , RNA Ribossômico 18S/química , RNA Ribossômico 18S/metabolismo , Coelhos , Ribonucleoproteínas/metabolismo
3.
Mol Cell ; 77(6): 1340-1349.e6, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32006463

RESUMO

The evolutionarily conserved Ski2-Ski3-Ski8 (Ski) complex containing the 3'→5' RNA helicase Ski2 binds to 80S ribosomes near the mRNA entrance and facilitates 3'→5' exosomal degradation of mRNA during ribosome-associated mRNA surveillance pathways. Here, we assayed Ski's activity using an in vitro reconstituted translation system and report that this complex efficiently extracts mRNA from 80S ribosomes in the 3'→5' direction in a nucleotide-by-nucleotide manner. The process is ATP dependent and can occur on pre- and post-translocation ribosomal complexes. The Ski complex can engage productively with mRNA and extract it from 80S complexes containing as few as 19 (but not 13) 3'-terminal mRNA nucleotides starting from the P site. The mRNA-extracting activity of the Ski complex suggests that its role in mRNA quality control pathways is not limited to acceleration of exosomal degradation and could include clearance of stalled ribosomes from mRNA, poising mRNA for degradation and rendering stalled ribosomes recyclable by Pelota/Hbs1/ABCE1.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Exossomos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/isolamento & purificação , Ribossomos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Exossomos/genética , Proteínas de Ligação ao GTP/genética , Humanos , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética
4.
EMBO J ; 41(16): e110581, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35822879

RESUMO

Hepatitis C virus mRNA contains an internal ribosome entry site (IRES) that mediates end-independent translation initiation, requiring a subset of eukaryotic initiation factors (eIFs). Biochemical studies revealed that direct binding of the IRES to the 40S ribosomal subunit places the initiation codon into the P site, where it base pairs with eIF2-bound Met-tRNAiMet forming a 48S initiation complex. Subsequently, eIF5 and eIF5B mediate subunit joining, yielding an elongation-competent 80S ribosome. Initiation can also proceed without eIF2, in which case Met-tRNAiMet is recruited directly by eIF5B. However, the structures of initiation complexes assembled on the HCV IRES, the transitions between different states, and the accompanying conformational changes have remained unknown. To fill these gaps, we now obtained cryo-EM structures of IRES initiation complexes, at resolutions up to 3.5 Å, that cover all major stages from the initial ribosomal association, through eIF2-containing 48S initiation complexes, to eIF5B-containing complexes immediately prior to subunit joining. These structures provide insights into the dynamic network of 40S/IRES contacts, highlight the role of IRES domain II, and reveal conformational changes that occur during the transition from eIF2- to eIF5B-containing 48S complexes and prepare them for subunit joining.


Assuntos
Hepacivirus , Hepatite C , Fator de Iniciação 2 em Eucariotos/metabolismo , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatite C/metabolismo , Humanos , Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas , RNA Viral/genética , RNA Viral/metabolismo , Ribossomos/metabolismo
5.
Mol Cell ; 72(2): 286-302.e8, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30244831

RESUMO

The ribosome-associated quality control (RQC) pathway degrades nascent chains (NCs) arising from interrupted translation. First, recycling factors split stalled ribosomes, yielding NC-tRNA/60S ribosome-nascent chain complexes (60S RNCs). 60S RNCs associate with NEMF, which recruits the E3 ubiquitin ligase Listerin that ubiquitinates NCs. The mechanism of subsequent ribosomal release of Ub-NCs remains obscure. We found that, in non-ubiquitinated 60S RNCs and 80S RNCs formed on non-stop mRNAs, tRNA is not firmly fixed in the P site, which allows peptidyl-tRNA hydrolase Ptrh1 to cleave NC-tRNA, suggesting the existence of a pathway involving release of non-ubiquitinated NCs. Association with NEMF and Listerin and ubiquitination of NCs results in accommodation of NC-tRNA, rendering 60S RNCs resistant to Ptrh1 but susceptible to ANKZF1, which induces specific cleavage in the tRNA acceptor arm, releasing proteasome-degradable Ub-NCs linked to four 3'-terminal tRNA nucleotides. We also found that TCF25, a poorly characterized RQC component, ensures preferential formation of the K48-ubiquitin linkage.


Assuntos
Proteínas de Transporte/metabolismo , Mamíferos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Biossíntese de Proteínas/fisiologia , RNA de Transferência/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
6.
Nucleic Acids Res ; 52(8): 4627-4643, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366554

RESUMO

Ribosomal stalling induces the ribosome-associated quality control (RQC) pathway targeting aberrant polypeptides. RQC is initiated by K63-polyubiquitination of ribosomal protein uS10 located at the mRNA entrance of stalled ribosomes by the E3 ubiquitin ligase ZNF598 (Hel2 in yeast). Ubiquitinated ribosomes are dissociated by the ASC-1 complex (ASCC) (RQC-Trigger (RQT) complex in yeast). A cryo-EM structure of the ribosome-bound RQT complex suggested the dissociation mechanism, in which the RNA helicase Slh1 subunit of RQT (ASCC3 in mammals) applies a pulling force on the mRNA, inducing destabilizing conformational changes in the 40S subunit, whereas the collided ribosome acts as a wedge, promoting subunit dissociation. Here, using an in vitro reconstitution approach, we found that ribosomal collision is not a strict prerequisite for ribosomal ubiquitination by ZNF598 or for ASCC-mediated ribosome release. Following ubiquitination by ZNF598, ASCC efficiently dissociated all polysomal ribosomes in a stalled queue, monosomes assembled in RRL, in vitro reconstituted 80S elongation complexes in pre- and post-translocated states, and 48S initiation complexes, as long as such complexes contained ≥ 30-35 3'-terminal mRNA nt. downstream from the P site and sufficiently long ubiquitin chains. Dissociation of polysomes and monosomes both involved ribosomal splitting, enabling Listerin-mediated ubiquitination of 60S-associated nascent chains.


Assuntos
Ribossomos , Ubiquitinação , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte , Proteínas de Ligação ao GTP , Polirribossomos/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Humanos
7.
Genes Dev ; 32(17-18): 1226-1241, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108131

RESUMO

GTP-binding protein 1 (GTPBP1) and GTPBP2 comprise a divergent group of translational GTPases with obscure functions, which are most closely related to eEF1A, eRF3, and Hbs1. Although recent reports implicated GTPBPs in mRNA surveillance and ribosome-associated quality control, how they perform these functions remains unknown. Here, we demonstrate that GTPBP1 possesses eEF1A-like elongation activity, delivering cognate aminoacyl-transfer RNA (aa-tRNA) to the ribosomal A site in a GTP-dependent manner. It also stimulates exosomal degradation of mRNAs in elongation complexes. The kinetics of GTPBP1-mediated elongation argues against its functioning in elongation per se but supports involvement in mRNA surveillance. Thus, GTP hydrolysis by GTPBP1 is not followed by rapid peptide bond formation, suggesting that after hydrolysis, GTPBP1 retains aa-tRNA, delaying its accommodation in the A site. In physiological settings, this would cause ribosome stalling, enabling GTPBP1 to elicit quality control programs; e.g., by recruiting the exosome. GTPBP1 can also deliver deacylated tRNA to the A site, indicating that it might function via interaction with deacylated tRNA, which accumulates during stresses. Although GTPBP2's binding to GTP was stimulated by Phe-tRNAPhe, suggesting that its function might also involve interaction with aa-tRNA, GTPBP2 lacked elongation activity and did not stimulate exosomal degradation, indicating that GTPBP1 and GTPBP2 have different functions.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/metabolismo , Elongação Traducional da Cadeia Peptídica , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo
8.
RNA ; 29(7): 1051-1068, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37041031

RESUMO

Initiation of translation on many viral mRNAs occurs by noncanonical mechanisms that involve 5' end-independent binding of ribosomes to an internal ribosome entry site (IRES). The ∼190-nt-long intergenic region (IGR) IRES of dicistroviruses such as cricket paralysis virus (CrPV) initiates translation without Met-tRNAi Met or initiation factors. Advances in metagenomics have revealed numerous dicistrovirus-like genomes with shorter, structurally distinct IGRs, such as nedicistrovirus (NediV) and Antarctic picorna-like virus 1 (APLV1). Like canonical IGR IRESs, the ∼165-nt-long NediV-like IGRs comprise three domains, but they lack key canonical motifs, including L1.1a/L1.1b loops (which bind to the L1 stalk of the ribosomal 60S subunit) and the apex of stem-loop V (SLV) (which binds to the head of the 40S subunit). Domain 2 consists of a compact, highly conserved pseudoknot (PKIII) that contains a UACUA loop motif and a protruding CrPV-like stem--loop SLIV. In vitro reconstitution experiments showed that NediV-like IRESs initiate translation from a non-AUG codon and form elongation-competent 80S ribosomal complexes in the absence of initiation factors and Met-tRNAi Met Unlike canonical IGR IRESs, NediV-like IRESs bind directly to the peptidyl (P) site of ribosomes leaving the aminoacyl (A) site accessible for decoding. The related structures of NediV-like IRESs and their common mechanism of action indicate that they exemplify a distinct class of IGR IRES.


Assuntos
Sítios Internos de Entrada Ribossomal , Ribossomos , Sítios Internos de Entrada Ribossomal/genética , DNA Intergênico/genética , DNA Intergênico/metabolismo , Ribossomos/metabolismo , Fatores de Iniciação de Peptídeos , RNA de Transferência/química , RNA Viral/genética , RNA Viral/química , Biossíntese de Proteínas
9.
Nucleic Acids Res ; 51(17): 9294-9313, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37427788

RESUMO

Internal ribosomal entry sites (IRESs) engage with the eukaryotic translation apparatus to promote end-independent initiation. We identified a conserved class of ∼150 nt long intergenic region (IGR) IRESs in dicistrovirus genomes derived from members of the phyla Arthropoda, Bryozoa, Cnidaria, Echinodermata, Entoprocta, Mollusca and Porifera. These IRESs, exemplified by Wenling picorna-like virus 2, resemble the canonical cricket paralysis virus (CrPV) IGR IRES in comprising two nested pseudoknots (PKII/PKIII) and a 3'-terminal pseudoknot (PKI) that mimics a tRNA anticodon stem-loop base-paired to mRNA. However, they are ∼50 nt shorter than CrPV-like IRESs, and PKIII is an H-type pseudoknot that lacks the SLIV and SLV stem-loops that are primarily responsible for the affinity of CrPV-like IRESs for the 40S ribosomal subunit and that restrict initial binding of PKI to its aminoacyl (A) site. Wenling-class IRESs bound strongly to 80S ribosomes but only weakly to 40S subunits. Whereas CrPV-like IRESs must be translocated from the A site to the peptidyl (P) site by elongation factor 2 for elongation to commence, Wenling-class IRESs bound directly to the P site of 80S ribosomes, and decoding begins without a prior translocation step. A chimeric CrPV clone containing a Wenling-class IRES was infectious, confirming that the IRES functioned in cells.


Assuntos
Sítios Internos de Entrada Ribossomal , Vírus de RNA , Sequência de Bases , DNA Intergênico/genética , DNA Intergênico/metabolismo , Ribossomos/metabolismo , Vírus de RNA/genética , RNA Viral/metabolismo , Biossíntese de Proteínas
10.
Nucleic Acids Res ; 50(2): 1052-1068, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34928389

RESUMO

In contrast to members of Picornaviridae which have long 5'-untranslated regions (5'UTRs) containing internal ribosomal entry sites (IRESs) that form five distinct classes, members of Caliciviridae typically have short 5'UTRs and initiation of translation on them is mediated by interaction of the viral 5'-terminal genome-linked protein (VPg) with subunits of eIF4F rather than by an IRES. The recent description of calicivirus genomes with 500-900nt long 5'UTRs was therefore unexpected and prompted us to examine them in detail. Sequence analysis and structural modelling of the atypically long 5'UTRs of Caliciviridae sp. isolate yc-13 and six other caliciviruses suggested that they contain picornavirus-like type 2 IRESs, whereas ruddy turnstone calicivirus (RTCV) and Caliciviridae sp. isolate hwf182cal1 calicivirus contain type 4 and type 5 IRESs, respectively. The suggestion that initiation on RTCV mRNA occurs by the type 4 IRES mechanism was confirmed experimentally using in vitro reconstitution. The high sequence identity between identified calicivirus IRESs and specific picornavirus IRESs suggests a common evolutionary origin. These calicivirus IRESs occur in a single phylogenetic branch of Caliciviridae and were likely acquired by horizontal gene transfer.


Assuntos
Caliciviridae/genética , Sítios Internos de Entrada Ribossomal , RNA Viral/metabolismo , Ribossomos/metabolismo , Transferência Genética Horizontal , Conformação de Ácido Nucleico , Biossíntese de Proteínas
11.
Genes Dev ; 30(13): 1573-88, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27401559

RESUMO

Ribosomal attachment to mammalian capped mRNAs is achieved through the cap-eukaryotic initiation factor 4E (eIF4E)-eIF4G-eIF3-40S chain of interactions, but the mechanism by which mRNA enters the mRNA-binding channel of the 40S subunit remains unknown. To investigate this process, we recapitulated initiation on capped mRNAs in vitro using a reconstituted translation system. Formation of initiation complexes at 5'-terminal AUGs was stimulated by the eIF4E-cap interaction and followed "the first AUG" rule, indicating that it did not occur by backward scanning. Initiation complexes formed even at the very 5' end of mRNA, implying that Met-tRNAi (Met) inspects mRNA from the first nucleotide and that initiation does not have a "blind spot." In assembled initiation complexes, the cap was no longer associated with eIF4E. Omission of eIF4A or disruption of eIF4E-eIF4G-eIF3 interactions converted eIF4E into a specific inhibitor of initiation on capped mRNAs. Taken together, these results are consistent with the model in which eIF4E-eIF4G-eIF3-40S interactions place eIF4E at the leading edge of the 40S subunit, and mRNA is threaded into the mRNA-binding channel such that Met-tRNAi (Met) can inspect it from the first nucleotide. Before entering, eIF4E likely dissociates from the cap to overcome steric hindrance. We also found that the m(7)G cap specifically interacts with eIF3l.


Assuntos
Fator de Iniciação 4F em Eucariotos/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Animais , Fator de Iniciação 4F em Eucariotos/genética , Mamíferos , Mutação , Capuzes de RNA/metabolismo , RNA de Transferência/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo
12.
Cell ; 135(7): 1237-50, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-19109895

RESUMO

Eukaryotic protein synthesis begins with assembly of 48S initiation complexes at the initiation codon of mRNA, which requires at least seven initiation factors (eIFs). First, 43S preinitiation complexes comprising 40S ribosomal subunits, eIFs 3, 2, 1, and 1A, and tRNA(Met)(i) attach to the 5'-proximal region of mRNA and then scan along the 5' untranslated region (5'UTR) to the initiation codon. Attachment of 43S complexes is mediated by three other eIFs, 4F, 4A, and 4B, which cooperatively unwind the cap-proximal region of mRNA and later also assist 43S complexes during scanning. We now report that these seven eIFs are not sufficient for efficient 48S complex formation on mRNAs with highly structured 5'UTRs, and that this process requires the DExH-box protein DHX29. DHX29 binds 40S subunits and hydrolyzes ATP, GTP, UTP, and CTP. NTP hydrolysis by DHX29 is strongly stimulated by 43S complexes and is required for DHX29's activity in promoting 48S complex formation.


Assuntos
Regiões 5' não Traduzidas , Biossíntese de Proteínas , RNA Helicases/metabolismo , RNA Mensageiro/genética , Animais , Células HeLa , Humanos , Coelhos , Reticulócitos/metabolismo
13.
Mol Cell ; 57(6): 1059-1073, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25794616

RESUMO

Reinitiation is a strategy used by viruses to express several cistrons from one mRNA. Although extremely weak after translation of long open reading frames (ORFs) on cellular mRNAs, reinitiation occurs efficiently on subgenomic bicistronic calicivirus mRNAs, enabling synthesis of minor capsid proteins. The process is governed by a short element upstream of the restart AUG, designated "termination upstream ribosomal binding site" (TURBS). It contains the conserved Motif 1 complementary to h26 of 18S rRNA, displayed in the loop of a hairpin formed by species-specific Motifs 2/2(∗). To determine the advantages conferred on reinitiation by TURBS, we reconstituted this process in vitro on two model bicistronic calicivirus mRNAs. We found that post-termination ribosomal tethering of mRNA by TURBS allows reinitiation by post-termination 80S ribosomes and diminishes dependence on eukaryotic initiation factor 3 (eIF3) of reinitiation by recycled 40S subunits, which can be mediated either by eIFs 2/1/1A or by Ligatin following ABCE1-dependent or -independent splitting of post-termination complexes.


Assuntos
Regulação Viral da Expressão Gênica , Vírus da Doença Hemorrágica de Coelhos/genética , Norovirus/genética , RNA Mensageiro/metabolismo , Sequência de Bases , Sítios de Ligação , Códon , Fator de Iniciação 1 em Eucariotos/genética , Fator de Iniciação 1 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Genes Virais , Vírus da Doença Hemorrágica de Coelhos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Norovirus/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
14.
Nucleic Acids Res ; 49(22): 12955-12969, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34883515

RESUMO

Translation initiation on structured mammalian mRNAs requires DHX29, a DExH protein that comprises a unique 534-aa-long N-terminal region (NTR) and a common catalytic DExH core. DHX29 binds to 40S subunits and possesses 40S-stimulated NTPase activity essential for its function. In the cryo-EM structure of DHX29-bound 43S preinitiation complexes, the main DHX29 density resides around the tip of helix 16 of 18S rRNA, from which it extends through a linker to the subunit interface forming an intersubunit domain next to the eIF1A binding site. Although a DExH core model can be fitted to the main density, the correlation between the remaining density and the NTR is unknown. Here, we present a model of 40S-bound DHX29, supported by directed hydroxyl radical cleavage data, showing that the intersubunit domain comprises a dsRNA-binding domain (dsRBD, aa 377-448) whereas linker corresponds to the long α-helix (aa 460-512) that follows the dsRBD. We also demonstrate that the N-terminal α-helix and the following UBA-like domain form a four-helix bundle (aa 90-166) that constitutes a previously unassigned section of the main density and resides between DHX29's C-terminal α-helix and the linker. In vitro reconstitution experiments revealed the critical and specific roles of these NTR elements for DHX29's function.


Assuntos
Iniciação Traducional da Cadeia Peptídica/genética , Biossíntese de Proteínas/genética , RNA Helicases/genética , RNA Mensageiro/genética , Ribossomos/genética , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Sítios de Ligação/genética , Microscopia Crioeletrônica , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , RNA Helicases/química , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , Ribossomos/metabolismo , Ribossomos/ultraestrutura
15.
Nat Rev Mol Cell Biol ; 11(2): 113-27, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20094052

RESUMO

Protein synthesis is principally regulated at the initiation stage (rather than during elongation or termination), allowing rapid, reversible and spatial control of gene expression. Progress over recent years in determining the structures and activities of initiation factors, and in mapping their interactions in ribosomal initiation complexes, have advanced our understanding of the complex translation initiation process. These developments have provided a solid foundation for studying the regulation of translation initiation by mechanisms that include the modulation of initiation factor activity (which affects almost all scanning-dependent initiation) and through sequence-specific RNA-binding proteins and microRNAs (which affect individual mRNAs).


Assuntos
Eucariotos/genética , Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Regulação da Expressão Gênica , Biossíntese de Proteínas , Animais , Eucariotos/química , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/genética , Humanos , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
16.
Nature ; 525(7570): 491-5, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26344199

RESUMO

During eukaryotic translation initiation, 43S complexes, comprising a 40S ribosomal subunit, initiator transfer RNA and initiation factors (eIF) 2, 3, 1 and 1A, attach to the 5'-terminal region of messenger RNA and scan along it to the initiation codon. Scanning on structured mRNAs also requires the DExH-box protein DHX29. Mammalian eIF3 contains 13 subunits and participates in nearly all steps of translation initiation. Eight subunits having PCI (proteasome, COP9 signalosome, eIF3) or MPN (Mpr1, Pad1, amino-terminal) domains constitute the structural core of eIF3, to which five peripheral subunits are flexibly linked. Here we present a cryo-electron microscopy structure of eIF3 in the context of the DHX29-bound 43S complex, showing the PCI/MPN core at ∼6 Šresolution. It reveals the organization of the individual subunits and their interactions with components of the 43S complex. We were able to build near-complete polyalanine-level models of the eIF3 PCI/MPN core and of two peripheral subunits. The implications for understanding mRNA ribosomal attachment and scanning are discussed.


Assuntos
Fator de Iniciação 3 em Eucariotos/química , Fator de Iniciação 3 em Eucariotos/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Iniciação Traducional da Cadeia Peptídica , Ribossomos/química , Ribossomos/metabolismo , Sítios de Ligação , Códon de Iniciação/genética , Microscopia Crioeletrônica , Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Modelos Moleculares , Fatores de Iniciação de Peptídeos/metabolismo , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Helicases/química , RNA Helicases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência de Metionina/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/metabolismo
17.
Mol Cell ; 51(2): 249-64, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23810859

RESUMO

During ribosome recycling, posttermination complexes are dissociated by ABCE1 and eRF1 into 60S and tRNA/mRNA-associated 40S subunits, after which tRNA and mRNA are released by eIF1/eIF1A, Ligatin, or MCT-1/DENR. Occasionally, 40S subunits remain associated with mRNA and reinitiate at nearby AUGs. We recapitulated reinitiation using a reconstituted mammalian translation system. The presence of eIF2, eIF3, eIF1, eIF1A, and Met-tRNAi(Met) was sufficient for recycled 40S subunits to remain on mRNA, scan bidirectionally, and reinitiate at upstream and downstream AUGs if mRNA regions flanking the stop codon were unstructured. Imposition of 3' directionality additionally required eIF4F. Strikingly, posttermination ribosomes were not stably anchored on mRNA and migrated bidirectionally to codons cognate to the P site tRNA. Migration depended on the mode of peptide release (puromycin > eRF1⋅eRF3) and nature of tRNA and was enhanced by eEF2. The mobility of posttermination ribosomes suggests that some reinitiation events could involve 80S ribosomes rather than 40S subunits.


Assuntos
Códon de Terminação/genética , Eucariotos/genética , Complexos Multiproteicos/metabolismo , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/genética , Ribossomos/fisiologia , Animais , Códon de Terminação/metabolismo , Eletroforese em Gel de Poliacrilamida , Fator de Iniciação 1 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Puromicina/farmacologia , RNA Mensageiro/metabolismo , RNA de Transferência de Metionina/genética , Proteínas Repressoras/metabolismo , eIF-2 Quinase/metabolismo
18.
Nucleic Acids Res ; 47(11): 5761-5776, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31216040

RESUMO

Giant viruses have extraordinarily large dsDNA genomes, and exceptionally, they encode various components of the translation apparatus, including tRNAs, aminoacyl-tRNA synthetases and translation factors. Here, we focused on the elongation factor 1 (EF1) family of viral translational GTPases (trGTPases), using computational and functional approaches to shed light on their functions. Multiple sequence alignment indicated that these trGTPases clustered into two groups epitomized by members of Mimiviridae and Marseilleviridae, respectively. trGTPases in the first group were more closely related to GTP-binding protein 1 (GTPBP1), whereas trGTPases in the second group were closer to eEF1A, eRF3 and Hbs1. Functional characterization of representative GTPBP1-like trGTPases (encoded by Hirudovirus, Catovirus and Moumouvirus) using in vitro reconstitution revealed that they possess eEF1A-like activity and can deliver cognate aa-tRNAs to the ribosomal A site during translation elongation. By contrast, representative eEF1A/eRF3/Hbs1-like viral trGTPases, encoded by Marseillevirus and Lausannevirus, have eRF3-like termination activity and stimulate peptide release by eRF1. Our analysis identified specific aspects of the functioning of these viral trGTPases with eRF1 of human, amoebal and Marseillevirus origin.


Assuntos
Acanthamoeba castellanii/metabolismo , Amoeba/metabolismo , GTP Fosfo-Hidrolases/química , Vírus Gigantes/metabolismo , Fator 1 de Elongação de Peptídeos/química , Análise por Conglomerados , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Proteínas Monoméricas de Ligação ao GTP/química , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Filogenia , Ligação Proteica , Biossíntese de Proteínas , Ribossomos/metabolismo
19.
Nature ; 503(7477): 539-43, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24185006

RESUMO

Hepatitis C virus (HCV) and classical swine fever virus (CSFV) messenger RNAs contain related (HCV-like) internal ribosome entry sites (IRESs) that promote 5'-end independent initiation of translation, requiring only a subset of the eukaryotic initiation factors (eIFs) needed for canonical initiation on cellular mRNAs. Initiation on HCV-like IRESs relies on their specific interaction with the 40S subunit, which places the initiation codon into the P site, where it directly base-pairs with eIF2-bound initiator methionyl transfer RNA to form a 48S initiation complex. However, all HCV-like IRESs also specifically interact with eIF3 (refs 2, 5-7, 9-12), but the role of this interaction in IRES-mediated initiation has remained unknown. During canonical initiation, eIF3 binds to the 40S subunit as a component of the 43S pre-initiation complex, and comparison of the ribosomal positions of eIF3 and the HCV IRES revealed that they overlap, so that their rearrangement would be required for formation of ribosomal complexes containing both components. Here we present a cryo-electron microscopy reconstruction of a 40S ribosomal complex containing eIF3 and the CSFV IRES. Remarkably, although the position and interactions of the CSFV IRES with the 40S subunit in this complex are similar to those of the HCV IRES in the 40S-IRES binary complex, eIF3 is completely displaced from its ribosomal position in the 43S complex, and instead interacts through its ribosome-binding surface exclusively with the apical region of domain III of the IRES. Our results suggest a role for the specific interaction of HCV-like IRESs with eIF3 in preventing ribosomal association of eIF3, which could serve two purposes: relieving the competition between the IRES and eIF3 for a common binding site on the 40S subunit, and reducing formation of 43S complexes, thereby favouring translation of viral mRNAs.


Assuntos
Vírus da Febre Suína Clássica/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Sequências Reguladoras de Ácido Ribonucleico/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Ribossomos/metabolismo , Animais , Ligação Competitiva , Microscopia Crioeletrônica , Fator de Iniciação 3 em Eucariotos/química , Fator de Iniciação 3 em Eucariotos/ultraestrutura , Humanos , Modelos Moleculares , Biossíntese de Proteínas , Coelhos , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Ribossomos/química , Ribossomos/ultraestrutura
20.
EMBO J ; 33(1): 76-92, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24357634

RESUMO

Picornavirus Type 1 IRESs comprise five principal domains (dII-dVI). Whereas dV binds eIF4G, a conserved AUG in dVI was suggested to stimulate attachment of 43S ribosomal preinitiation complexes, which then scan to the initiation codon. Initiation on Type 1 IRESs also requires IRES trans-acting factors (ITAFs), and several candidates have been proposed. Here, we report the in vitro reconstitution of initiation on three Type 1 IRESs: poliovirus (PV), enterovirus 71 (EV71), and bovine enterovirus (BEV). All of them require eIF2, eIF3, eIF4A, eIF4G, eIF4B, eIF1A, and a single ITAF, poly(C) binding protein 2 (PCBP2). In each instance, initiation starts with binding of eIF4G/eIF4A. Subsequent recruitment of 43S complexes strictly requires direct interaction of their eIF3 constituent with eIF4G. The following events can differ between IRESs, depending on the stability of dVI. If it is unstructured (BEV), all ribosomes scan through dVI to the initiation codon, requiring eIF1 to bypass its AUG. If it is structured (PV, EV71), most initiation events occur without inspection of dVI, implying that its AUG does not determine ribosomal attachment.


Assuntos
Enterovirus Humano A/fisiologia , Enterovirus Bovino/fisiologia , Iniciação Traducional da Cadeia Peptídica , Poliovirus/fisiologia , Códon de Iniciação/metabolismo , Enterovirus Humano A/genética , Enterovirus Humano A/metabolismo , Enterovirus Bovino/genética , Enterovirus Bovino/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Poliovirus/genética , Poliovirus/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA