Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 181(2): 424-441.e21, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32234521

RESUMO

KRAS mutant pancreatic ductal adenocarcinoma (PDAC) is characterized by a desmoplastic response that promotes hypovascularity, immunosuppression, and resistance to chemo- and immunotherapies. We show that a combination of MEK and CDK4/6 inhibitors that target KRAS-directed oncogenic signaling can suppress PDAC proliferation through induction of retinoblastoma (RB) protein-mediated senescence. In preclinical mouse models of PDAC, this senescence-inducing therapy produces a senescence-associated secretory phenotype (SASP) that includes pro-angiogenic factors that promote tumor vascularization, which in turn enhances drug delivery and efficacy of cytotoxic gemcitabine chemotherapy. In addition, SASP-mediated endothelial cell activation stimulates the accumulation of CD8+ T cells into otherwise immunologically "cold" tumors, sensitizing tumors to PD-1 checkpoint blockade. Therefore, in PDAC models, therapy-induced senescence can establish emergent susceptibilities to otherwise ineffective chemo- and immunotherapies through SASP-dependent effects on the tumor vasculature and immune system.


Assuntos
Envelhecimento/fisiologia , Carcinoma Ductal Pancreático/patologia , Remodelação Vascular/fisiologia , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/microbiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Genes ras/genética , Humanos , Imunoterapia/métodos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Neoplasias Pancreáticas/patologia , Proteína do Retinoblastoma/imunologia , Transdução de Sinais/genética , Microambiente Tumoral , Remodelação Vascular/genética
3.
Nat Chem Biol ; 19(12): 1448-1457, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37322156

RESUMO

Autophagy is a cellular process with important functions that drive neurodegenerative diseases and cancers. Lysosomal hyperacidification is a hallmark of autophagy. Lysosomal pH is currently measured by fluorescent probes in cell culture, but existing methods do not allow for quantitative, transient or in vivo measurements. In the present study, we developed near-infrared optical nanosensors using organic color centers (covalent sp3 defects on carbon nanotubes) to measure autophagy-mediated endolysosomal hyperacidification in live cells and in vivo. The nanosensors localize to the lysosomes, where the emission band shifts in response to local pH, enabling spatial, dynamic and quantitative mapping of subtle changes in lysosomal pH. Using the sensor, we observed cellular and intratumoral hyperacidification on administration of mTORC1 and V-ATPase modulators, revealing that lysosomal acidification mirrors the dynamics of S6K dephosphorylation and LC3B lipidation while diverging from p62 degradation. This sensor enables the transient and in vivo monitoring of the autophagy-lysosomal pathway.


Assuntos
Nanotubos de Carbono , Autofagia/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Lisossomos/metabolismo , Concentração de Íons de Hidrogênio
4.
J Am Chem Soc ; 146(18): 12454-12462, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38687180

RESUMO

Quantum defects in single-walled carbon nanotubes promote exciton localization, which enables potential applications in biodevices and quantum light sources. However, the effects of local electric fields on the emissive energy states of quantum defects and how they can be controlled are unexplored. Here, we investigate quantum defect sensitization by engineering an intrinsically disordered protein to undergo a phase change at a quantum defect site. We designed a supercharged single-chain antibody fragment (scFv) to enable a full ligand-induced folding transition from an intrinsically disordered state to a compact folded state in the presence of a cytokine. The supercharged scFv was conjugated to a quantum defect to induce a substantial local electric change upon ligand binding. Employing the detection of a proinflammatory biomarker, interleukin-6, as a representative model system, supercharged scFv-coupled quantum defects exhibited robust fluorescence wavelength shifts concomitant with the protein folding transition. Quantum chemical simulations suggest that the quantum defects amplify the optical response to the localization of charges produced upon the antigen-induced folding of the proteins, which is difficult to achieve in unmodified nanotubes. These findings portend new approaches to modulate quantum defect emission for biomarker sensing and protein biophysics and to engineer proteins to modulate binding signal transduction.


Assuntos
Teoria Quântica , Anticorpos de Cadeia Única/química , Nanotubos de Carbono/química , Dobramento de Proteína , Interleucina-6 , Humanos , Proteínas Intrinsicamente Desordenadas/química
5.
Nat Mater ; 22(3): 391-399, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36864161

RESUMO

Medulloblastoma is the most common malignant paediatric brain tumour, with ~30% mediated by Sonic hedgehog signalling. Vismodegib-mediated inhibition of the Sonic hedgehog effector Smoothened inhibits tumour growth but causes growth plate fusion at effective doses. Here, we report a nanotherapeutic approach targeting endothelial tumour vasculature to enhance blood-brain barrier crossing. We use fucoidan-based nanocarriers targeting endothelial P-selectin to induce caveolin-1-dependent transcytosis and thus nanocarrier transport into the brain tumour microenvironment in a selective and active manner, the efficiency of which is increased by radiation treatment. In a Sonic hedgehog medulloblastoma animal model, fucoidan-based nanoparticles encapsulating vismodegib exhibit a striking efficacy and marked reduced bone toxicity and drug exposure to healthy brain tissue. Overall, these findings demonstrate a potent strategy for targeted intracranial pharmacodelivery that overcomes the restrictive blood-brain barrier to achieve enhanced tumour-selective penetration and has therapeutic implications for diseases within the central nervous system.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Animais , Proteínas Hedgehog , Barreira Hematoencefálica , Caveolina 1 , Selectina-P , Transcitose , Microambiente Tumoral
6.
Circ Res ; 130(10): 1550-1564, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35430873

RESUMO

BACKGROUND: Renal T cells contribute importantly to hypertension, but the underlying mechanism is incompletely understood. We reported that CD8Ts directly stimulate distal convoluted tubule cells (DCTs) to increase NCC (sodium chloride co-transporter) expression and salt reabsorption. However, the mechanistic basis of this pathogenic pathway that promotes hypertension remains to be elucidated. METHODS: We used mouse models of DOCA+salt (DOCA) treatment and adoptive transfer of CD8+ T cells (CD8T) from hypertensive animals to normotensive animals in in vivo studies. Co-culture of mouse DCTs and CD8Ts was used as in vitro model to test the effect of CD8T activation in promoting NCC-mediated sodium retention and to identify critical molecular players contributing to the CD8T-DCT interaction. Interferon (IFNγ)-KO mice and mice receiving renal tubule-specific knockdown of PDL1 were used to verify in vitro findings. Blood pressure was continuously monitored via radio-biotelemetry, and kidney samples were saved at experimental end points for analysis. RESULTS: We identified critical molecular players and demonstrated their roles in augmenting the CD8T-DCT interaction leading to salt-sensitive hypertension. We found that activated CD8Ts exhibit enhanced interaction with DCTs via IFN-γ-induced upregulation of MHC-I and PDL1 in DCTs, thereby stimulating higher expression of NCC in DCTs to cause excessive salt retention and progressive elevation of blood pressure. Eliminating IFN-γ or renal tubule-specific knockdown of PDL1 prevented T cell homing into the kidney, thereby attenuating hypertension in 2 different mouse models. CONCLUSIONS: Our results identified the role of activated CD8Ts in contributing to increased sodium retention in DCTS through the IFNγ-PDL1 pathway. These findings provide a new mechanism for T cell involvement in the pathogenesis of hypertension and reveal novel therapeutic targets.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Animais , Linfócitos T CD8-Positivos/metabolismo , Acetato de Desoxicorticosterona/metabolismo , Acetato de Desoxicorticosterona/farmacologia , Modelos Animais de Doenças , Hipertensão/metabolismo , Túbulos Renais Distais/metabolismo , Túbulos Renais Distais/patologia , Camundongos , Sódio/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Cloreto de Sódio na Dieta
7.
Nano Lett ; 23(23): 10687-10695, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37889874

RESUMO

Dysregulated lipid metabolism contributes to neurodegenerative pathologies and neurological decline in lysosomal storage disorders as well as more common neurodegenerative diseases. Niemann-Pick type A (NPA) is a fatal neurodegenerative lysosomal storage disease characterized by abnormal sphingomyelin accumulation in the endolysosomal lumen. The ability to monitor abnormalities in lipid homeostasis intracranially could improve basic investigations and the development of effective treatment strategies. We investigated the carbon nanotube-based detection of intracranial lipid content. We found that the near-infrared emission of a carbon nanotube-based lipid sensor responds to lipid accumulation in neuronal and in vivo models of NPA. The nanosensor detected lipid accumulation intracranially in an acid sphingomyelinase knockout mouse via noninvasive near-infrared spectroscopy. This work indicates a tool to improve drug development processes in NPA, other lysosomal storage diseases, and neurodegenerative diseases.


Assuntos
Doenças por Armazenamento dos Lisossomos , Nanotubos de Carbono , Doenças Neurodegenerativas , Animais , Camundongos , Doenças por Armazenamento dos Lisossomos/patologia , Esfingomielinas , Neurônios/metabolismo , Lisossomos/metabolismo
8.
Blood ; 137(15): 2057-2069, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33067607

RESUMO

Cancer and normal cells use multiple antiapoptotic BCL2 proteins to prevent cell death. Therapeutic targeting of multiple BCL2 family proteins enhances tumor killing but is also associated with increased systemic toxicity. Here, we demonstrate that the dual targeting of MCL1 and BCL2 proteins using the small molecules S63845 and venetoclax induces durable remissions in mice that harbor human diffuse large B-cell lymphoma (DLBCL) tumors but is accompanied by hematologic toxicity and weight loss. To mitigate these toxicities, we encapsulated S63845 or venetoclax into nanoparticles that target P-selectin, which is enriched in tumor endothelial cells. In vivo and ex vivo imaging demonstrated preferential targeting of the nanoparticles to lymphoma tumors over vital organs. Mass spectrometry analyses after administration of nanoparticle drugs confirmed tumor enrichment of the drug while reducing plasma levels. Furthermore, nanoparticle encapsulation allowed 3.5- to 6.5-fold reduction in drug dose, induced sustained remissions, and minimized toxicity. Our results support the development of nanoparticles to deliver BH3 mimetic combinations in lymphoma and in general for toxic drugs in cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Pirimidinas/administração & dosagem , Sulfonamidas/administração & dosagem , Tiofenos/administração & dosagem , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Nanopartículas/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirimidinas/efeitos adversos , Pirimidinas/uso terapêutico , Sulfonamidas/efeitos adversos , Sulfonamidas/uso terapêutico , Índice Terapêutico , Tiofenos/efeitos adversos , Tiofenos/uso terapêutico
9.
Nat Chem Biol ; 17(2): 129-137, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33414556

RESUMO

Although nanotechnology often addresses biomedical needs, nanoscale tools can also facilitate broad biological discovery. Nanoscale delivery, imaging, biosensing, and bioreactor technologies may address unmet questions at the interface between chemistry and biology. Currently, many chemical biologists do not include nanomaterials in their toolbox, and few investigators develop nanomaterials in the context of chemical tools to answer biological questions. We reason that the two fields are ripe with opportunity for greater synergy. Nanotechnologies can expand the utility of chemical tools in the hands of chemical biologists, for example, through controlled delivery of reactive and/or toxic compounds or signal-binding events of small molecules in living systems. Conversely, chemical biologists can work with nanotechnologists to address challenging biological questions that are inaccessible to both communities. This Perspective aims to introduce the chemical biology community to nanotechnologies that may expand their methodologies while inspiring nanotechnologists to address questions relevant to chemical biology.


Assuntos
Biologia Molecular/tendências , Nanotecnologia/tendências , Animais , Materiais Biocompatíveis , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Enzimas/química , Humanos , Biologia Molecular/métodos , Imagem Molecular/métodos , Nanopartículas
10.
J Am Soc Nephrol ; 33(2): 342-356, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34921111

RESUMO

BACKGROUND: Repeated administration of cisplatin causes CKD. In previous studies, we reported that the kidney-secreted survival protein renalase (RNLS) and an agonist peptide protected mice from cisplatin-induced AKI. METHODS: To investigate whether kidney-targeted delivery of RNLS might prevent cisplatin-induced CKD in a mouse model, we achieved specific delivery of a RNLS agonist peptide (RP81) to the renal proximal tubule by encapsulating the peptide in mesoscale nanoparticles (MNPs). We used genetic deletion of RNLS, single-cell RNA sequencing analysis, and Western blotting to determine efficacy and to explore underlying mechanisms. We also measured plasma RNLS in patients with advanced head and neck squamous cell carcinoma receiving their first dose of cisplatin chemotherapy. RESULTS: In mice with CKD induced by cisplatin, we observed an approximate 60% reduction of kidney RNLS; genetic deletion of RNLS was associated with significantly more severe cisplatin-induced CKD. In this severe model of cisplatin-induced CKD, systemic administration of MNP-encapsulated RP81 (RP81-MNP) significantly reduced CKD as assessed by plasma creatinine and histology. It also decreased inflammatory cytokines in plasma and inhibited regulated necrosis in kidney. Single-cell RNA sequencing analyses revealed that RP81-MNP preserved epithelial components of the nephron and the vasculature and suppressed inflammatory macrophages and myofibroblasts. In patients receiving their first dose of cisplatin chemotherapy, plasma RNLS levels trended lower at day 14 post-treatment. CONCLUSIONS: Kidney-targeted delivery of RNLS agonist RP81-MNP protects against cisplatin-induced CKD by decreasing cell death and improving the viability of the renal proximal tubule. These findings suggest that such an approach might mitigate the development of CKD in patients receiving cisplatin cancer chemotherapy.


Assuntos
Cisplatino/efeitos adversos , Monoaminoxidase/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/prevenção & controle , Sequência de Aminoácidos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Linhagem Celular , Cisplatino/administração & dosagem , Creatinina/sangue , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Taxa de Filtração Glomerular , Receptor Celular 1 do Vírus da Hepatite A/sangue , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoaminoxidase/deficiência , Monoaminoxidase/genética , Nanocápsulas/administração & dosagem , Peptídeos/administração & dosagem , Peptídeos/genética , Insuficiência Renal Crônica/patologia
11.
J Hist Behav Sci ; 59(1): 62-69, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36533611

RESUMO

After the general societal and political change in November 1989 in Czechoslovakia, the subject "History of Psychology" became the stable component of curriculum of studying psychology at the Department of Psychology of Faculty of Arts of Charles University in Prague. The author of this paper has taught "History of Psychology" in Czech since 1998 for more than 20 years all students of psychology and he is teaching this subject the students of ERASMUS+ program from whole Europe, studying at Charles University in Prague, now. Indivisible part of the curriculum is represented by the history of Czechoslovak and Czech psychology. In References, the most important publications in the field of history of Czechoslovak and Czech psychology are presented.


Assuntos
Comunismo , Isoflavonas , Masculino , Humanos , História do Século XX , República Tcheca , Tchecoslováquia , Europa (Continente) , Sistemas Políticos
12.
Radiographics ; 42(1): 289-301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34890274

RESUMO

Roughly 37% of Americans 60 years of age and older experience chronic pain due to osteoarthritis (OA) of the knee. After conservative treatment (pharmacologic, physical therapy, and joint injections) fails, patients often require total knee arthroplasty to alleviate pain and regain knee function. Given the high economic burden of surgery paired with its invasive nature, many patients with this degenerative joint disease seek alternative treatment. Moreover, many patients with severe knee OA who also have comorbidities that preclude surgery-most often morbid obesity-are left without options. Geniculate artery embolization (GAE) is a minimally invasive intra-arterial intervention that was originally developed for the treatment of knee hemarthrosis that has recently been adapted for symptomatic knee OA. Through selective embolization of geniculate branches corresponding to the site of knee pain, GAE inhibits the neovascularity that contributes to the catabolic and inflammatory drive of OA. Preliminary trials over the past decade have demonstrated promising clinical results, including decreased pain and improved function and quality of life after treatment. Given such success, GAE provides another minimally invasive treatment option for knee OA to patients who feel reluctant to undergo or are ineligible for surgery. The authors review the radiographic manifestations and current standard of treatment of OA and hemarthrosis of the knee. Procedural technique, embolic selection, and clinical evidence for GAE in the treatment of OA and hemarthrosis of the knee are also explored. The online slide presentation from the RSNA Annual Meeting is available for this article. ©RSNA, 2021.


Assuntos
Artroplastia do Joelho , Osteoartrite do Joelho , Artérias , Artroplastia do Joelho/efeitos adversos , Hemartrose/etiologia , Hemartrose/terapia , Humanos , Osteoartrite do Joelho/complicações , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/terapia , Qualidade de Vida
13.
Nano Lett ; 21(15): 6441-6448, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34296885

RESUMO

Applications of single-walled carbon nanotubes (SWCNTs) in bioimaging and biosensing have been limited by difficulties with isolating single-chirality nanotube preparations with desired functionalities. Unique optical properties, such as multiple narrow near-infrared bands and several modes of signal transduction, including solvatochromism and FRET, are ideal for live cell/organism imaging and sensing applications. However, internanotube FRET has not been investigated in biological contexts. We developed single-chirality subcellular SWCNT imaging probes and investigated their internanotube FRET capabilities in live cells. To functionalize SWCNTs, we replaced the surfactant coating of aqueous two-phase extraction-sorted single-chirality nanotubes with helical polycarbodiimide polymers containing different functionalities. We achieved single-chirality SWCNT targeting of different subcellular structures, including the nucleus, to enable multiplexed imaging. We also targeted purified (6,5) and (7,6) chiralities to the same structures and observed internanotube FRET within these organelles. This work portends the use of single-chirality carbon nanotube optical probes for applications in biomedical research.


Assuntos
Nanotubos de Carbono , Diagnóstico por Imagem , Transferência Ressonante de Energia de Fluorescência , Humanos , Polímeros , Tensoativos
14.
Nano Lett ; 20(10): 7287-7295, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32955895

RESUMO

Fusion protein tags are widely used to capture and track proteins in research and industrial bioreactor processes. Quantifying fusion-tagged proteins normally requires several purification steps coupled with classical protein assays. Here, we developed a broadly applicable nanosensor platform that quantifies glutathione-S-transferase (GST) fusion proteins in real-time. We synthesized a glutathione-DNA-carbon nanotube system to investigate glutathione-GST interactions via semiconducting single-walled carbon nanotube (SWCNT) photoluminescence. We found that SWCNT fluorescence wavelength and intensity modulation occurred specifically in response to GST and GST-fusions. The sensor response was dependent on SWCNT structure, wherein mod(n - m, 3) = 1 nanotube wavelength and intensity responses correlated with nanotube diameter distinctly from mod(n - m, 3) = 2 SWCNT responses. We also found broad functionality of this sensor to diverse GST-tagged proteins. This work comprises the first label-free optical sensor for GST and has implications for the assessment of protein expression in situ, including in imaging and industrial bioreactor settings.


Assuntos
Glutationa Transferase , Glutationa , Cromatografia de Afinidade , Glutationa Transferase/genética , Proteínas
15.
Nano Lett ; 20(11): 7819-7827, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33119310

RESUMO

Enzymatic suicide inactivation, a route of permanent enzyme inhibition, is the mechanism of action for a wide array of pharmaceuticals. Here, we developed the first nanosensor that selectively reports the suicide inactivation pathway of an enzyme. The sensor is based on modulation of the near-infrared fluorescence of an enzyme-bound carbon nanotube. The nanosensor responded selectively to substrate-mediated suicide inactivation of the tyrosinase enzyme via bathochromic shifting of the nanotube emission wavelength. Mechanistic investigations revealed that singlet oxygen generated by the suicide inactivation pathway induced the response. We used the nanosensor to quantify the degree of enzymatic inactivation by measuring response rates to small molecule tyrosinase modulators. This work resulted in a new capability of interrogating a specific route of enzymatic death. Potential applications include drug screening and hit-validation for compounds that elicit or inhibit enzymatic inactivation and single-molecule measurements to assess population heterogeneity in enzyme activity.


Assuntos
Monofenol Mono-Oxigenase , Nanotubos de Carbono , Fluorescência , Humanos , Cinética , Monofenol Mono-Oxigenase/metabolismo , Nanotecnologia
16.
Kidney Int ; 98(1): 76-87, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32386967

RESUMO

We developed an innovative therapy for ischemic acute kidney injury with discerning kidney-targeted delivery of a selective Toll-like receptor 9 (TLR9) antagonist in mice subjected to renal ischemia reperfusion injury. Our previous studies showed that mice deficient in renal proximal tubular TLR9 were protected against renal ischemia reperfusion injury demonstrating a critical role for renal proximal tubular TLR9 in generating ischemic acute kidney injury. Herein, we used 300-400 nm polymer-based mesoscale nanoparticles that localize to the renal tubules after intravenous injection. Mice were subjected to sham surgery or 30 minutes renal ischemia and reperfusion injury after receiving mesoscale nanoparticles encapsulated with a selective TLR9 antagonist (unmethylated CpG oligonucleotide ODN2088) or mesoscale nanoparticles encapsulating a negative control oligonucleotide. Mice treated with the encapsulated TLR9 antagonist either six hours before renal ischemia, at the time of reperfusion or 1.5 hours after reperfusion were protected against ischemic acute kidney injury. The ODN2088-encapsulated nanoparticles attenuated renal tubular necrosis, inflammation, decreased proinflammatory cytokine synthesis. neutrophil and macrophage infiltration and apoptosis, decreased DNA fragmentation and caspase 3/8 activation when compared to the negative control nanoparticle treated mice. Taken together, our studies further suggest that renal proximal tubular TLR9 activation exacerbates ischemic acute kidney injury by promoting renal tubular inflammation, apoptosis and necrosis after ischemia reperfusion. Thus, our studies suggest a potential promising therapy for ischemic acute kidney injury with selective kidney tubular targeting of TLR9 using mesoscale nanoparticle-based drug delivery.


Assuntos
Injúria Renal Aguda , Nanopartículas , Traumatismo por Reperfusão , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Animais , Apoptose , Isquemia , Rim , Túbulos Renais Proximais , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Receptor Toll-Like 9/genética
17.
Nano Lett ; 19(7): 4343-4354, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31244242

RESUMO

Preclinical measurements of drug exposure to specific organs and tissues is normally performed by destructive methods. Tissue-specific measurements are important, especially for drugs with intractable dose-limiting toxicities, such as doxorubicin-mediated cardiotoxicity. We developed a method to rapidly quantify doxorubicin exposure to tissues within living organisms using an implantable optical nanosensor that can be interrogated noninvasively following surgical implantation. The near-infrared fluorescence of single-walled carbon nanotubes functionalized with DNA was found to respond to doxorubicin via a large and uniform red-shift. We found this to be common to DNA-intercalating agents, including anthracycline compounds such as doxorubicin. Doxorubicin was measured in buffer and serum, intracellularly, and from single nanotubes on a surface. Doxorubicin adsorption to the DNA-suspended nanotubes did not displace DNA but bound irreversibly. We incorporated the nanosensors into an implantable membrane which allowed cumulative detection of doxorubicin exposure in vivo. On implanting the devices into different compartments, such as subcutaneously and within the peritoneal cavity, we achieved real-time, minimally invasive detection of doxorubicin injected into the peritoneal cavity, as well as compartment-specific measurements. We measured doxorubicin translocation across the peritoneal membrane in vivo. Robust, minimally invasive pharmacokinetic measurements in vivo suggest the suitability of this technology for preclinical drug discovery applications.


Assuntos
DNA/química , Doxorrubicina , Monitoramento de Medicamentos , Fluorescência , Nanotubos de Carbono/química , Animais , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Camundongos , Camundongos Nus
18.
Int J Psychol ; 55(2): 133-143, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31304980

RESUMO

The article provides a comprehensive review of Czech psychology-its history and its current state. It enumerates significant psychologists who were Czech, born in Bohemia or who were instrumental for the development of psychology in the region. The article also enumerates Czech psychological associations along with their main representatives, journals, and academic facilities involved in education and research in psychology. It is pointed out that the origins of psychology as a science are in the Central Europe-the first laboratory of W. Wundt was in Leipzig, Germany; S. Freud was born in Bohemia, in the Moravian city of Príbor and he practiced in Vienna, Austria. The Czech capital Prague will also become the capital of the psychological science in 2020 when it will be hosting the 32nd International Congress of Psychology (ICP 2020).


Assuntos
Psicologia/normas , República Tcheca/epidemiologia , Tchecoslováquia/epidemiologia , Feminino , Humanos , Masculino
19.
Nat Mater ; 17(4): 361-368, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29403054

RESUMO

Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.


Assuntos
Portadores de Fármacos/química , Nanomedicina/métodos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacocinética , Endocitose , Indóis/química , Camundongos , Nanopartículas/química , Tamanho da Partícula , Distribuição Tecidual
20.
MMWR Morb Mortal Wkly Rep ; 67(7): 216-218, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29470458

RESUMO

Amyotrophic lateral sclerosis (ALS), commonly known as Lou Gehrig's disease, is a progressive and fatal neuromuscular disease; the majority of ALS patients die within 2-5 years of receiving a diagnosis (1). Familial ALS, a hereditary form of the disease, accounts for 5%-10% of cases, whereas the remaining sporadic cases have no clearly defined etiology (1). ALS affects persons of all races and ethnicities; however, whites, males, non-Hispanics, persons aged >60 years, and those with a family history of ALS are more likely to develop the disease (1-3). No cure for ALS has yet been identified, and the lack of proven and effective therapeutic interventions is an ongoing challenge. Current treatments available do not cure ALS but have been shown to slow disease progression. Until recently, only one drug (riluzole) was approved to treat ALS; however, in 2017, the Food and Drug Administration approved a second drug, edaravone (4).


Assuntos
Esclerose Lateral Amiotrófica/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Sistema de Registros , Estados Unidos/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA