Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 33(8): 1284-1298, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37714713

RESUMO

Chinese indicine cattle harbor a much higher genetic diversity compared with other domestic cattle, but their genome architecture remains uninvestigated. Using PacBio HiFi sequencing data from 10 Chinese indicine cattle across southern China, we assembled 20 high-quality partially phased genomes and integrated them into a multiassembly graph containing 148.5 Mb (5.6%) of novel sequence. We identified 156,009 high-confidence nonredundant structural variants (SVs) and 206 SV hotspots spanning ∼195 Mb of gene-rich sequence. We detected 34,249 archaic introgressed fragments in Chinese indicine cattle covering 1.93 Gb (73.3%) of the genome. We inferred an average of 3.8%, 3.2%, 1.4%, and 0.5% of introgressed sequence originating, respectively, from banteng-like, kouprey-like, gayal-like, and gaur-like Bos species, as well as 0.6% of unknown origin. Introgression from multiple donors might have contributed to the genetic diversity of Chinese indicine cattle. Altogether, this study highlights the contribution of interspecies introgression to the genomic architecture of an important livestock population and shows how exotic genomic elements can contribute to the genetic variation available for selection.


Assuntos
Bovinos , Ruminantes , Animais , Bovinos/genética , China , Genoma , Genômica , Ruminantes/genética
2.
PLoS Genet ; 19(2): e1010615, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36821549

RESUMO

The worldwide sheep population comprises more than 1000 breeds. Together, these exhibit a considerable morphological diversity, which has not been extensively investigated at the molecular level. Here, we analyze whole-genome sequencing individuals of 1,098 domestic sheep from 154 breeds, and 69 wild sheep from seven Ovis species. On average, we detected 6.8%, 1.0% and 0.2% introgressed sequence in domestic sheep originating from Iranian mouflon, urial and argali, respectively, with rare introgressions from other wild species. Interestingly, several introgressed haplotypes contributed to the morphological differentiations across sheep breeds, such as a RXFP2 haplotype from Iranian mouflon conferring the spiral horn trait, a MSRB3 haplotype from argali strongly associated with ear morphology, and a VPS13B haplotype probably originating from urial and mouflon possibly associated with facial traits. Our results reveal that introgression events from wild Ovis species contributed to the high rate of morphological differentiation in sheep breeds, but also to individual variation within breeds. We propose that long divergent haplotypes are a ubiquitous source of phenotypic variation that allows adaptation to a variable environment, and that these remain intact in the receiving population probably due to reduced recombination.


Assuntos
Aclimatação , Carneiro Doméstico , Ovinos/genética , Animais , Carneiro Doméstico/genética , Haplótipos/genética , Irã (Geográfico) , Fenótipo
3.
Mol Ecol ; 33(2): e17205, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37971141

RESUMO

Genomic studies of species threatened by extinction are providing crucial information about evolutionary mechanisms and genetic consequences of population declines and bottlenecks. However, to understand how species avoid the extinction vortex, insights can be drawn by studying species that thrive despite past declines. Here, we studied the population genomics of the muskox (Ovibos moschatus), an Ice Age relict that was at the brink of extinction for thousands of years at the end of the Pleistocene yet appears to be thriving today. We analysed 108 whole genomes, including present-day individuals representing the current native range of both muskox subspecies, the white-faced and the barren-ground muskox (O. moschatus wardi and O. moschatus moschatus) and a ~21,000-year-old ancient individual from Siberia. We found that the muskox' demographic history was profoundly shaped by past climate changes and post-glacial re-colonizations. In particular, the white-faced muskox has the lowest genome-wide heterozygosity recorded in an ungulate. Yet, there is no evidence of inbreeding depression in native muskox populations. We hypothesize that this can be explained by the effect of long-term gradual population declines that allowed for purging of strongly deleterious mutations. This study provides insights into how species with a history of population bottlenecks, small population sizes and low genetic diversity survive against all odds.


Assuntos
Metagenômica , Resiliência Psicológica , Humanos , Animais , Recém-Nascido , Evolução Biológica , Genômica , Ruminantes/genética , Variação Genética/genética
4.
Mol Biol Evol ; 39(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35779009

RESUMO

African wild pigs have a contentious evolutionary and biogeographic history. Until recently, desert warthog (Phacochoerus aethiopicus) and common warthog (P. africanus) were considered a single species. Molecular evidence surprisingly suggested they diverged at least 4.4 million years ago, and possibly outside of Africa. We sequenced the first whole-genomes of four desert warthogs and 35 common warthogs from throughout their range. We show that these two species diverged much later than previously estimated, 400,000-1,700,000 years ago depending on assumptions of gene flow. This brings it into agreement with the paleontological record. We found that the common warthog originated in western Africa and subsequently colonized eastern and southern Africa. During this range expansion, the common warthog interbred with the desert warthog, presumably in eastern Africa, underlining this region's importance in African biogeography. We found that immune system-related genes may have adaptively introgressed into common warthogs, indicating that resistance to novel diseases was one of the most potent drivers of evolution as common warthogs expanded their range. Hence, we solve some of the key controversies surrounding warthog evolution and reveal a complex evolutionary history involving range expansion, introgression, and adaptation to new diseases.


Assuntos
Resistência à Doença , Doenças dos Suínos , África , África Oriental , Animais , Sequência de Bases , Resistência à Doença/genética , Suínos
5.
Mol Biol Evol ; 39(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35325213

RESUMO

The gene numbers and evolutionary rates of birds were assumed to be much lower than those of mammals, which is in sharp contrast to the huge species number and morphological diversity of birds. It is, therefore, necessary to construct a complete avian genome and analyze its evolution. We constructed a chicken pan-genome from 20 de novo assembled genomes with high sequencing depth, and identified 1,335 protein-coding genes and 3,011 long noncoding RNAs not found in GRCg6a. The majority of these novel genes were detected across most individuals of the examined transcriptomes but were seldomly measured in each of the DNA sequencing data regardless of Illumina or PacBio technology. Furthermore, different from previous pan-genome models, most of these novel genes were overrepresented on chromosomal subtelomeric regions and microchromosomes, surrounded by extremely high proportions of tandem repeats, which strongly blocks DNA sequencing. These hidden genes were proved to be shared by all chicken genomes, included many housekeeping genes, and enriched in immune pathways. Comparative genomics revealed the novel genes had 3-fold elevated substitution rates than known ones, updating the knowledge about evolutionary rates in birds. Our study provides a framework for constructing a better chicken genome, which will contribute toward the understanding of avian evolution and the improvement of poultry breeding.


Assuntos
Galinhas , Genoma , Animais , Galinhas/genética , Genômica , Mamíferos/genética , Análise de Sequência de DNA
6.
Proc Biol Sci ; 290(1999): 20230538, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37253422

RESUMO

The muskox and reindeer are the only ruminants that have evolved to survive in harsh Arctic environments. However, the genetic basis of this Arctic adaptation remains largely unclear. Here, we compared a de novo assembled muskox genome with reindeer and other ruminant genomes to identify convergent amino acid substitutions, rapidly evolving genes and positively selected genes among the two Arctic ruminants. We found these candidate genes were mainly involved in brown adipose tissue (BAT) thermogenesis and circadian rhythm. Furthermore, by integrating transcriptomic data from goat adipose tissues (white and brown), we demonstrated that muskox and reindeer may have evolved modulating mitochondrion, lipid metabolism and angiogenesis pathways to enhance BAT thermogenesis. In addition, results from co-immunoprecipitation experiments prove that convergent amino acid substitution of the angiogenesis-related gene hypoxia-inducible factor 2alpha (HIF2A), resulting in weakening of its interaction with prolyl hydroxylase domain-containing protein 2 (PHD2), may increase angiogenesis of BAT. Altogether, our work provides new insights into the molecular mechanisms involved in Arctic adaptation.


Assuntos
Ritmo Circadiano , Ruminantes , Termogênese , Animais , Tecido Adiposo Marrom/metabolismo , Cabras , Rena/genética , Ruminantes/genética , Termogênese/genética , Regiões Árticas
7.
Mol Ecol ; 32(8): 1860-1874, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36651275

RESUMO

The iconic Cape buffalo has experienced several documented population declines in recent history. These declines have been largely attributed to the late 19th century rinderpest pandemic. However, the effect of the rinderpest pandemic on their genetic diversity remains contentious, and other factors that have potentially affected this diversity include environmental changes during the Pleistocene, range expansions and recent human activity. Motivated by this, we present analyses of whole genome sequencing data from 59 individuals from across the Cape buffalo range to assess present-day levels of genome-wide genetic diversity and what factors have influenced these levels. We found that the Cape buffalo has high average heterozygosity overall (0.40%), with the two southernmost populations having significantly lower heterozygosity levels (0.33% and 0.29%) on par with that of the domesticated water buffalo (0.29%). Interestingly, we found that these lower levels are probably due to recent inbreeding (average fraction of runs of homozygosity 23.7% and 19.9%) rather than factors further back in time during the Pleistocene. Moreover, detailed investigations of recent demographic history show that events across the past three centuries were the main drivers of the exceptional loss of genetic diversity in the southernmost populations, coincident with the onset of colonialism in the southern extreme of the Cape buffalo range. Hence, our results add to the growing body of studies suggesting that multiple recent human-mediated impacts during the colonial period caused massive losses of large mammal abundance in southern Africa.


Assuntos
Genética Populacional , Peste Bovina , Animais , Humanos , África do Sul , Variação Genética , Búfalos/genética , Colonialismo
8.
Mol Ecol ; 31(6): 1682-1699, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35068013

RESUMO

The harbour seal (Phoca vitulina) is the most widely distributed pinniped, occupying a wide variety of habitats and climatic zones across the Northern Hemisphere. Intriguingly, the harbour seal is also one of the most philopatric seals, raising questions as to how it colonized its current range. To shed light on the origin, remarkable range expansion, population structure and genetic diversity of this species, we used genotyping-by-sequencing to analyse ~13,500 biallelic single nucleotide polymorphisms from 286 individuals sampled from 22 localities across the species' range. Our results point to a Northeast Pacific origin of the harbour seal, colonization of the North Atlantic via the Canadian Arctic, and subsequent stepping-stone range expansions across the North Atlantic from North America to Europe, accompanied by a successive loss of genetic diversity. Our analyses further revealed a deep divergence between modern North Pacific and North Atlantic harbour seals, with finer-scale genetic structure at regional and local scales consistent with strong philopatry. The study provides new insights into the harbour seal's remarkable ability to colonize and adapt to a wide range of habitats. Furthermore, it has implications for current harbour seal subspecies delineations and highlights the need for international and national red lists and management plans to ensure the protection of genetically and demographically isolated populations.


Assuntos
Phoca , Adaptação Fisiológica , Animais , Canadá , Europa (Continente) , Metagenômica , Phoca/genética
9.
Glob Chang Biol ; 28(22): 6602-6617, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36031712

RESUMO

Processes leading to range contractions and population declines of Arctic megafauna during the late Pleistocene and early Holocene are uncertain, with intense debate on the roles of human hunting, climatic change, and their synergy. Obstacles to a resolution have included an overreliance on correlative rather than process-explicit approaches for inferring drivers of distributional and demographic change. Here, we disentangle the ecological mechanisms and threats that were integral in the decline and extinction of the muskox (Ovibos moschatus) in Eurasia and in its expansion in North America using process-explicit macroecological models. The approach integrates modern and fossil occurrence records, ancient DNA, spatiotemporal reconstructions of past climatic change, species-specific population ecology, and the growth and spread of anatomically modern humans. We show that accurately reconstructing inferences of past demographic changes for muskox over the last 21,000 years require high dispersal abilities, large maximum densities, and a small Allee effect. Analyses of validated process-explicit projections indicate that climatic change was the primary driver of muskox distribution shifts and demographic changes across its previously extensive (circumpolar) range, with populations responding negatively to rapid warming events. Regional analyses show that the range collapse and extinction of the muskox in Europe (~13,000 years ago) was likely caused by humans operating in synergy with climatic warming. In Canada and Greenland, climatic change and human activities probably combined to drive recent population sizes. The impact of past climatic change on the range and extinction dynamics of muskox during the Pleistocene-Holocene transition signals a vulnerability of this species to future increased warming. By better establishing the ecological processes that shaped the distribution of the muskox through space and time, we show that process-explicit macroecological models have important applications for the future conservation and management of this iconic species in a warming Arctic.


Assuntos
DNA Antigo , Ruminantes , Animais , Regiões Árticas , Mudança Climática , Fósseis , Humanos
10.
Mol Biol Evol ; 37(7): 2099-2109, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32324877

RESUMO

Goats are one of the most widespread farmed animals across the world; however, their migration route to East Asia and local evolutionary history remain poorly understood. Here, we sequenced 27 ancient Chinese goat genomes dating from the Late Neolithic period to the Iron Age. We found close genetic affinities between ancient and modern Chinese goats, demonstrating their genetic continuity. We found that Chinese goats originated from the eastern regions around the Fertile Crescent, and we estimated that the ancestors of Chinese goats diverged from this population in the Chalcolithic period. Modern Chinese goats were divided into a northern and a southern group, coinciding with the most prominent climatic division in China, and two genes related to hair follicle development, FGF5 and EDA2R, were highly divergent between these populations. We identified a likely causal de novo deletion near FGF5 in northern Chinese goats that increased to high frequency over time, whereas EDA2R harbored standing variation dating to the Neolithic. Our findings add to our understanding of the genetic composition and local evolutionary process of Chinese goats.


Assuntos
Evolução Biológica , DNA Antigo/química , Genoma , Cabras/genética , Adaptação Biológica , Animais , China , Seleção Genética
11.
Mol Ecol ; 30(2): 528-544, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33226701

RESUMO

Grant's gazelles have recently been proposed to be a species complex comprising three highly divergent mtDNA lineages (Nanger granti, N. notata and N. petersii). The three lineages have nonoverlapping distributions in East Africa, but without any obvious geographical divisions, making them an interesting model for studying the early-stage evolutionary dynamics of allopatric speciation in detail. Here, we use genomic data obtained by restriction site-associated (RAD) sequencing of 106 gazelle individuals to shed light on the evolutionary processes underlying Grant's gazelle divergence, to characterize their genetic structure and to assess the presence of gene flow between the main lineages in the species complex. We date the species divergence to 134,000 years ago, which is recent in evolutionary terms. We find population subdivision within N. granti, which coincides with the previously suggested two subspecies, N. g. granti and N. g. robertsii. Moreover, these two lineages seem to have hybridized in Masai Mara. Perhaps more surprisingly given their extreme genetic differentiation, N. granti and N. petersii also show signs of prolonged admixture in Mkomazi, which we identified as a hybrid population most likely founded by allopatric lineages coming into secondary contact. Despite the admixed composition of this population, elevated X chromosomal differentiation suggests that selection may be shaping the outcome of hybridization in this population. Our results therefore provide detailed insights into the processes of allopatric speciation and secondary contact in a recently radiated species complex.


Assuntos
Antílopes , Fluxo Gênico , África Oriental , Animais , Antílopes/genética , DNA Mitocondrial/genética , Especiação Genética , Hibridização Genética , Filogenia
13.
Mol Ecol ; 26(19): 5203-5222, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28488335

RESUMO

The relative effect of past climate fluctuations and anthropogenic activities on current biome distribution is subject to increasing attention, notably in biodiversity hot spots. In Madagascar, where humans arrived in the last ~4 to 5,000 years, the exact causes of the demise of large vertebrates that cohabited with humans are yet unclear. The prevailing narrative holds that Madagascar was covered with forest before human arrival and that the expansion of grasslands was the result of human-driven deforestation. However, recent studies have shown that vegetation and fauna structure substantially fluctuated during the Holocene. Here, we study the Holocene history of habitat fragmentation in the north of Madagascar using a population genetics approach. To do so, we infer the demographic history of two northern Madagascar neighbouring, congeneric and critically endangered forest dwelling lemur species-Propithecus tattersalli and Propithecus perrieri-using population genetic analyses. Our results highlight the necessity to consider population structure and changes in connectivity in demographic history inferences. We show that both species underwent demographic fluctuations which most likely occurred after the mid-Holocene transition. While mid-Holocene climate change probably triggered major demographic changes in the two lemur species range and connectivity, human settlements that expanded over the last four millennia in northern Madagascar likely played a role in the loss and fragmentation of the forest cover.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Genética Populacional , Strepsirhini/classificação , Animais , Evolução Biológica , Florestas , Humanos , Madagáscar , Modelos Genéticos , Dinâmica Populacional , Strepsirhini/genética
14.
Proc Natl Acad Sci U S A ; 111(13): 4922-7, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24639531

RESUMO

The extinction of New Zealand's moa (Aves: Dinornithiformes) followed the arrival of humans in the late 13th century and was the final event of the prehistoric Late Quaternary megafauna extinctions. Determining the state of the moa populations in the pre-extinction period is fundamental to understanding the causes of the event. We sampled 281 moa individuals and combined radiocarbon dating with ancient DNA analyses to help resolve the extinction debate and gain insights into moa biology. The samples, which were predominantly from the last 4,000 years preceding the extinction, represent four sympatric moa species excavated from five adjacent fossil deposits. We characterized the moa assemblage using mitochondrial DNA and nuclear microsatellite markers developed specifically for moa. Although genetic diversity differed significantly among the four species, we found that the millennia preceding the extinction were characterized by a remarkable degree of genetic stability in all species, with no loss of heterozygosity and no shifts in allele frequencies over time. The extinction event itself was too rapid to be manifested in the moa gene pools. Contradicting previous claims of a decline in moa before Polynesian settlement in New Zealand, our findings indicate that the populations were large and stable before suddenly disappearing. This interpretation is supported by approximate Bayesian computation analyses. Our analyses consolidate the disappearance of moa as the most rapid, human-facilitated megafauna extinction documented to date.


Assuntos
Aves/fisiologia , Extinção Biológica , Animais , Teorema de Bayes , Aves/genética , Calibragem , DNA Mitocondrial/genética , Variação Genética , Geografia , Humanos , Dados de Sequência Molecular , Nova Zelândia , Fatores de Tempo
15.
J Hered ; 106(5): 593-607, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26249652

RESUMO

The riverine barrier model suggests that rivers play a significant role in separating widespread organisms into isolated populations. In this study, we used a comparative approach to investigate the phylogeography of 6 didelphid marsupial species in central Brazil. Specifically, we evaluate the role of the mid-Araguaia River in differentiating populations and estimate divergence time among lineages to assess the timing of differentiation of these species, using mitochondrial DNA sequence data. The 6 didelphid marsupials revealed different intraspecific genetic patterns and structure. The 3 larger and more generalist species, Didelphis albiventris, Didelphis marsupialis, and Philander opossum, showed connectivity across the Araguaia River. In contrast the genetic structure of the 3 smaller and specialist species, Gracilinanus agilis, Marmosa (Marmosa) murina, and Marmosa (Micoureus) demerarae was shaped by the mid-Araguaia. Moreover, the split of eastern and western bank populations of the 2 latter species is consistent with the age of Araguaia River sediments formation. We hypothesize that the role of the Araguaia as a riverine barrier is linked to the level of ecological specialization among the 6 didelphid species and differences in their ability to cross rivers or disperse through the associated habitat types.


Assuntos
Evolução Biológica , Genética Populacional , Gambás/genética , Rios , Animais , Teorema de Bayes , Brasil , DNA Mitocondrial/genética , Ecossistema , Haplótipos , Funções Verossimilhança , Modelos Genéticos , Gambás/classificação , Filogeografia , Análise de Sequência de DNA
16.
Genome Biol Evol ; 16(4)2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38526019

RESUMO

Phylogenomic data provide valuable opportunities for studying evolutionary rates and timescales. These analyses require theoretical and statistical tools based on molecular clocks. We present ClockstaRX, a flexible platform for exploring and testing evolutionary rate signals in phylogenomic data. Here, information about evolutionary rates in branches across gene trees is placed in Euclidean space, allowing data transformation, visualization, and hypothesis testing. ClockstaRX implements formal tests for identifying groups of loci and branches that make a large contribution to patterns of rate variation. This information can then be used to test for drivers of genomic evolutionary rates or to inform models for molecular dating. Drawing on the results of a simulation study, we recommend forms of data exploration and filtering that might be useful prior to molecular-clock analyses.


Assuntos
Evolução Molecular , Modelos Genéticos , Genômica , Genoma , Evolução Biológica , Filogenia
17.
Curr Biol ; 34(7): 1576-1586.e5, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38479386

RESUMO

Strong genetic structure has prompted discussion regarding giraffe taxonomy,1,2,3 including a suggestion to split the giraffe into four species: Northern (Giraffa c. camelopardalis), Reticulated (G. c. reticulata), Masai (G. c. tippelskirchi), and Southern giraffes (G. c. giraffa).4,5,6 However, their evolutionary history is not yet fully resolved, as previous studies used a simple bifurcating model and did not explore the presence or extent of gene flow between lineages. We therefore inferred a model that incorporates various evolutionary processes to assess the drivers of contemporary giraffe diversity. We analyzed whole-genome sequencing data from 90 wild giraffes from 29 localities across their current distribution. The most basal divergence was dated to 280 kya. Genetic differentiation, FST, among major lineages ranged between 0.28 and 0.62, and we found significant levels of ancient gene flow between them. In particular, several analyses suggested that the Reticulated lineage evolved through admixture, with almost equal contribution from the Northern lineage and an ancestral lineage related to Masai and Southern giraffes. These new results highlight a scenario of strong differentiation despite gene flow, providing further context for the interpretation of giraffe diversity and the process of speciation in general. They also illustrate that conservation measures need to target various lineages and sublineages and that separate management strategies are needed to conserve giraffe diversity effectively. Given local extinctions and recent dramatic declines in many giraffe populations, this improved understanding of giraffe evolutionary history is relevant for conservation interventions, including reintroductions and reinforcements of existing populations.


Assuntos
Girafas , Animais , Girafas/genética , Ruminantes/genética , Evolução Biológica , Filogenia , Deriva Genética
18.
Nat Commun ; 15(1): 172, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172616

RESUMO

Several African mammals exhibit a phylogeographic pattern where closely related taxa are split between West/Central and East/Southern Africa, but their evolutionary relationships and histories remain controversial. Bushpigs (Potamochoerus larvatus) and red river hogs (P. porcus) are recognised as separate species due to morphological distinctions, a perceived lack of interbreeding at contact, and putatively old divergence times, but historically, they were considered conspecific. Moreover, the presence of Malagasy bushpigs as the sole large terrestrial mammal shared with the African mainland raises intriguing questions about its origin and arrival in Madagascar. Analyses of 67 whole genomes revealed a genetic continuum between the two species, with putative signatures of historical gene flow, variable FST values, and a recent divergence time (<500,000 years). Thus, our study challenges key arguments for splitting Potamochoerus into two species and suggests their speciation might be incomplete. Our findings also indicate that Malagasy bushpigs diverged from southern African populations and underwent a limited bottleneck 1000-5000 years ago, concurrent with human arrival in Madagascar. These results shed light on the evolutionary history of an iconic and widespread African mammal and provide insight into the longstanding biogeographic puzzle surrounding the bushpig's presence in Madagascar.


Assuntos
Mamíferos , Humanos , Animais , Suínos , Madagáscar , Filogenia , Porosidade , Filogeografia , Mamíferos/genética
19.
Nat Commun ; 15(1): 2921, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609362

RESUMO

The blue wildebeest (Connochaetes taurinus) is a keystone species in savanna ecosystems from southern to eastern Africa, and is well known for its spectacular migrations and locally extreme abundance. In contrast, the black wildebeest (C. gnou) is endemic to southern Africa, barely escaped extinction in the 1900s and is feared to be in danger of genetic swamping from the blue wildebeest. Despite the ecological importance of the wildebeest, there is a lack of understanding of how its unique migratory ecology has affected its gene flow, genetic structure and phylogeography. Here, we analyze whole genomes from 121 blue and 22 black wildebeest across the genus' range. We find discrete genetic structure consistent with the morphologically defined subspecies. Unexpectedly, our analyses reveal no signs of recent interspecific admixture, but rather a late Pleistocene introgression of black wildebeest into the southern blue wildebeest populations. Finally, we find that migratory blue wildebeest populations exhibit a combination of long-range panmixia, higher genetic diversity and lower inbreeding levels compared to neighboring populations whose migration has recently been disrupted. These findings provide crucial insights into the evolutionary history of the wildebeest, and tangible genetic evidence for the negative effects of anthropogenic activities on highly migratory ungulates.


Assuntos
Antílopes , Animais , Antílopes/genética , Ecossistema , África Oriental , África Austral , Efeitos Antropogênicos
20.
Mol Ecol Resour ; 23(7): 1604-1619, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37400991

RESUMO

The genome of recently admixed individuals or hybrids has characteristic genetic patterns that can be used to learn about their recent admixture history. One of these are patterns of interancestry heterozygosity, which can be inferred from SNP data from either called genotypes or genotype likelihoods, without the need for information on genomic location. This makes them applicable to a wide range of data that are often used in evolutionary and conservation genomic studies, such as low-depth sequencing mapped to scaffolds and reduced representation sequencing. Here we implement maximum likelihood estimation of interancestry heterozygosity patterns using two complementary models. We furthermore develop apoh (Admixture Pedigrees of Hybrids), a software that uses estimates of paired ancestry proportions to detect recently admixed individuals or hybrids, and to suggest possible admixture pedigrees. It furthermore calculates several hybrid indices that make it easier to identify and rank possible admixture pedigrees that could give rise to the estimated patterns. We implemented apoh both as a command line tool and as a Graphical User Interface that allows the user to automatically and interactively explore, rank and visualize compatible recent admixture pedigrees, and calculate the different summary indices. We validate the performance of the method using admixed family trios from the 1000 Genomes Project. In addition, we show its applicability on identifying recent hybrids from RAD-seq data of Grant's gazelle (Nanger granti and Nanger petersii) and whole genome low-depth data of waterbuck (Kobus ellipsiprymnus) which shows complex admixture of up to four populations.


Assuntos
Genética Populacional , Genoma , Humanos , Linhagem , Genoma/genética , Genótipo , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA