RESUMO
BACKGROUND: Attempts to use dietary lysozyme (LYZ) as an alternative to antibiotics in broilers have been successful, but further research is needed for effective use. Here, we compared the differences between LYZ and avilamycin (AVI) feed additives for growth performance, gut health and immunity of broilers. One-day old, one hundred and twenty broiler chicks (Ross 308) were randomly allocated into three groups consisting forty birds in each group. Standard diet without supplementation was applied as the control group (I), while the chicks of the other groups were supplemented with 100 mg of AVI per kg diet (AVI, group II), and 90 mg LYZ per kg diet (LYZ, group III) for five consecutive weeks. RESULTS: Body weight, feed conversion ratio, body weight gain, and European production efficiency factor were markedly (p < 0.05) increased in both AVI and LYZ groups in relation to CON group, but the feed intake and protein efficiency ratio were not affected. Both AVI and LYZ significantly (p < 0.001) upregulated the mRNA expression of ileal interleukin-18 (IL-18), interferon-gamma (IFN-γ), and interleukin-10 (IL-10), interleukin-2 (IL-2), and glutathione peroxidase (GSH-PX) genes compared to CON group. However, IL-2, IL-10, IL-18, and GSH-PX genes were markedly (p < 0.01) upregulated in LYZ compared to the AVI group. LYZ treated group had a significant increase (p < 0.05) in the serological haemagglutination inhibition titers of H5N1 vaccination and a significant decrease (p < 0.0001) in coliform counts compared to control and AVI groups, but all growth parameters were nearly similar between AVI and LYZ groups. The VH and VH/CD were markedly higher in LYZ than AVI and control groups. CONCLUSION: Exogenous dietary lysozyme supplementation by a dose of 90 mg/kg broilers' diet induced better effects on intestinal integrity, fecal bacterial counts, immune response, and growth performance which were comparable to avilamycin. Therefore, dietary lysozyme could safely replace avilamycin in the broiler chickens' diet. However, further experimental studies regarding the use of lysozyme in commercial broilers, both in vitro and in vivo, targeting more communities of intestinal microbiome and explaining more details about its beneficial effects need to be conducted.
Assuntos
Galinhas , Virus da Influenza A Subtipo H5N1 , Oligossacarídeos , Animais , Interleucina-2 , Interleucina-10 , Interleucina-18 , Muramidase , Dieta/veterinária , Suplementos Nutricionais , Peso Corporal , Ração Animal/análiseRESUMO
Subclinical mastitis (SCM) is a prevalent serious disease among dairy cows worldwide. It poses a significant challenge to the dairy industry, animal welfare, and a threat to public health. The present study aimed to investigate the molecular detection, prevalence, and antimicrobial resistance of Staphylococcus spp. and Streptococcus spp. isolated from raw composite milk samples obtained from SCM dairy cattle in Bangladesh. A total of 612 quarters milk samples obtained from 153 cows were analyzed for SCM using the California Mastitis Test. Bacterial isolation and identification were carried out and bacterial species were confirmed using molecular polymerase chain reaction methods. Antimicrobial susceptibility testing was performed using disc diffusion method. The findings revealed that the prevalence of SCM was 70.3% (26/37), 35.95% (55/153), and 23.04% (141/612) in the herd, cow, and quarter levels, respectively. Among the positive samples, 92.7% (51/55) were Staphylococcus spp. (S. aureus, S. chromogenes, and S. simulans) and the remaining isolates were 7.3% (4/55) Streptococcus spp. (Streptococcus agalactiae and Streptococcus dysgalactiae). The most prevalent species was S. chromogenes, accounting for 67.3% (37/55). Antimicrobial susceptibility testing showed that 65.5% of isolates were susceptible to cefoxitin, whereas, 89.1% were resistant to penicillin. Overall, 12 isolates (21.8%) out of 55 were resistant to more than three classes of antimicrobials and were defined as multidrug-resistant isolates. Methicillin-resistance gene was detected in 61.1% of the cefoxitin-resistant isolates. A multivariate logistic regression analysis identified five potential risk factors including the lack of post-milking teat disinfection (OR: 3.06), absence of immediate feeding after milking (OR: 9.81), poor udder hygiene (OR: 7.83), tick infestation (OR: 13.76), and absence of dry cow therapy (OR: 3.31). The findings of the current study underscore the urgent requirement for targeted interventions, considering the identified factors to effectively manage and control SCM in dairy cows.
RESUMO
Campylobacter jejuni is the most common cause of bacterial foodborne gastroenteritis and holds significant public health importance. The continuing increase of antibiotic-resistant Campylobacter necessitates the development of antibiotic-alternative approaches to control infections in poultry and in humans. Here, we assessed the ability of E. coli Nissle 1917 (EcN; free and chitosan-alginate microencapsulated) to reduce C. jejuni colonization in chickens and measured the effect of EcN on the immune responses, intestinal morphology, and gut microbes of chickens. Our results showed that the supplementation of 3-week-old chickens daily with free EcN in drinking water resulted in a 2.0 log reduction of C. jejuni colonization in the cecum, whereas supplementing EcN orally three times a week, either free or microencapsulated, resulted in 2.0 and 2.5 log reductions of C. jejuni colonization, respectively. Gavaged free and microencapsulated EcN did not have an impact on the evenness or the richness of the cecal microbiota, but it did increase the villous height (VH), crypt depth (CD), and VH:CD ratio in the jejunum and ileum of chickens. Further, the supplementation of EcN (all types) increased C. jejuni-specific and total IgA and IgY antibodies in chicken's serum. Microencapsulated EcN induced the expression of several cytokines and chemokines (1.6 to 4.3-fold), which activate the Th1, Th2, and Th17 pathways. Overall, microencapsulated EcN displayed promising effects as a potential nonantibiotic strategy to control C. jejuni colonization in chickens. Future studies on testing microencapsulated EcN in the feed and water of chickens raised on built-up floor litter would facilitate the development of EcN for industrial applications to control Campylobacter infections in poultry.
Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Quitosana , Água Potável , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Probióticos , Animais , Humanos , Alginatos/farmacologia , Antibacterianos/farmacologia , Infecções por Campylobacter/microbiologia , Ceco/microbiologia , Quimiocinas , Galinhas/microbiologia , Quitosana/farmacologia , Citocinas , Escherichia coli , Imunidade , Imunoglobulina A , Doenças das Aves Domésticas/microbiologia , Probióticos/farmacologia , Probióticos/uso terapêuticoRESUMO
Avian pathogenic Escherichia coli (APEC), an extraintestinal pathogenic E. coli (ExPEC), causes colibacillosis in chickens and is reportedly associated with urinary tract infections and meningitis in humans. Development of resistance is a major limitation of current ExPEC antibiotic therapy. New antibacterials that can circumvent resistance problem such as antimicrobial peptides (AMPs) are critically needed. Here, we evaluated the efficacy of Lactobacillus rhamnosus GG (LGG)-derived peptides against APEC and uncovered their potential antibacterial targets. Three peptides (NPSRQERR [P1], PDENK [P2], and VHTAPK [P3]) displayed inhibitory activity against APEC. These peptides were effective against APEC in biofilm and chicken macrophage HD11 cells. Treatment with these peptides reduced the cecum colonization (0.5 to 1.3 log) of APEC in chickens. Microbiota analysis revealed two peptides (P1 and P2) decreased Enterobacteriaceae abundance with minimal impact on overall cecal microbiota of chickens. Bacterial cytological profiling showed peptides disrupt APEC membranes either by causing membrane shedding, rupturing, or flaccidity. Furthermore, gene expression analysis revealed that peptides downregulated the expression of ompC (>13.0-fold), ompF (>11.3-fold), and mlaA (>4.9-fold), genes responsible for the maintenance of outer membrane (OM) lipid asymmetry. Consistently, immunoblot analysis also showed decreased levels of OmpC and MlaA proteins in APEC treated with peptides. Alanine scanning studies revealed residues crucial (P1, N, E, R and P; P2, D and E; P3, T, P, and K) for their activity. Overall, our study identified peptides with a new antibacterial target that can be developed to control APEC infections in chickens, thereby curtailing poultry-originated human ExPEC infections. IMPORTANCE Avian pathogenic Escherichia coli (APEC) is a subgroup of extraintestinal pathogenic E. coli (ExPEC) and considered a foodborne zoonotic pathogen transmitted through consumption of contaminated poultry products. APEC shares genetic similarities with human ExPECs, including uropathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC). Our study identified Lactobacillus rhamnosus GG (LGG)-derived peptides (P1 [NPSRQERR], P2 [PDENK], and P3 [VHTAPK]) effective in reducing APEC infection in chickens. Antimicrobial peptides (AMPs) are regarded as ideal candidates for antibacterial development because of their low propensity for resistance development and ability to kill resistant bacteria. Mechanistic studies showed peptides disrupt the APEC membrane by affecting the MlaA-OmpC/F system responsible for the maintenance of outer membrane (OM) lipid asymmetry, a promising new druggable target to overcome resistance problems in Gram-negative bacteria. Altogether, these peptides can provide a valuable approach for development of novel anti-ExPEC therapies, including APEC, human ExPECs, and other related Gram-negative pathogens. Furthermore, effective control of APEC infections in chickens can curb poultry-originated ExPEC infections in humans.
Assuntos
Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/metabolismo , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Porinas/metabolismo , Doenças das Aves Domésticas/microbiologia , Animais , Membrana Externa Bacteriana/efeitos dos fármacos , Membrana Externa Bacteriana/metabolismo , Biofilmes/efeitos dos fármacos , Galinhas/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/crescimento & desenvolvimento , Escherichia coli Extraintestinal Patogênica/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Transferência de Fosfolipídeos/genética , Porinas/genética , Doenças das Aves Domésticas/tratamento farmacológicoRESUMO
Bacterial spot (BS) of tomato, caused by Xanthomonas gardneri, X. perforans, X. vesicatoria, and X. euvesicatoria, is difficult to control because of the high prevalence of copper- and streptomycin-resistant strains and the lack of resistance cultivars and effective bactericides. The objective of this study was to identify novel growth inhibitors of BS-causing Xanthomonas (BS-X) species by using small molecules (SM; n = 4,182). Several SMs (X1, X2, X5, X9, X12, and X16) completely inhibited the growth of BS-X isolates (n = 68 X. gardneri, 55 X. perforans, 4 X. vesicatoria, and 32 X. euvesicatoria) at ≥12.5 µM by disrupting Xanthomonas cell integrity through weakening of the cell membrane and formation of pores. These SMs were also effective against biofilm-embedded, copper- and streptomycin-resistant Xanthomonas strains while having minimal impact on other plant pathogenic (n = 20) and beneficial bacteria (n = 12). Furthermore, these SMs displayed equivalent antimicrobial activity against BS-X in seeds and X. gardneri in seedlings compared with conventional control methods (copper sulfate and streptomycin) at similar concentrations while having no detectable toxicity to tomato tissues. SMs X2, X5, and X12 reduced X. gardneri, X. perforans, X. vesicatoria, and X. euvesicatoria populations in artificially infested seeds ≤3.4-log CFU/seed 1 day postinfection (dpi) compared with the infested untreated control (P ≤ 0.05). SMs X1, X2, X5, and X12 reduced disease severity ≤72% and engineered bioluminescent X. gardneri populations ≤3.0-log CFU/plant in infected seedlings at 7 dpi compared with the infected untreated control (P ≤ 0.05). Additional studies are needed to increase the applicability of these SMs for BS management in tomato production.
Assuntos
Solanum lycopersicum , Xanthomonas , Inibidores do Crescimento , Doenças das PlantasRESUMO
Plant pathogenic bacteria in the genus Erwinia cause economically important diseases, including bacterial wilt of cucurbits caused by Erwinia tracheiphila. Conventional bactericides are insufficient to control this disease. Using high-throughput screening, 464 small molecules (SMs) with either cidal or static activity at 100 µM against a cucumber strain of E. tracheiphila were identified. Among them, 20 SMs (SM1 to SM20), composed of nine distinct chemical moiety structures, were cidal to multiple E. tracheiphila strains at 100 µM. These lead SMs had low toxicity to human cells and honey bees at 100 µM. No phytotoxicity was observed on melon plants at 100 µM, except when SM12 was either mixed with Silwet L-77 and foliar sprayed or when delivered through the roots. Lead SMs did not inhibit the growth of beneficial Pseudomonas and Enterobacter species but inhibited the growth of Bacillus species. Nineteen SMs were cidal to Xanthomonas cucurbitae and showed >50% growth inhibition against Pseudomonas syringae pv. lachrymans. In addition, 19 SMs were cidal or static against Erwinia amylovora in vitro. Five SMs demonstrated potential to suppress E. tracheiphila when foliar sprayed on melon plants at 2× the minimum bactericidal concentration. Thirteen SMs reduced Et load in melon plants when delivered via roots. Temperature and light did not affect the activity of SMs. In vitro cidal activity was observed after 3 to 10 h of exposure to these five SMs. Here, we report 19 SMs that provide chemical scaffolds for future development of bactericides against plant pathogenic bacterial species.
Assuntos
Cucurbitaceae , Erwinia , Animais , Peso Molecular , Doenças das PlantasRESUMO
Little is known about the abiotic factors contributing to the preharvest persistence of Salmonella in tomato tissues. Therefore, we investigated the effects of specific environmental conditions and contamination methods on the persistence and dissemination of Salmonella enterica subsp. enterica serotype Typhimurium (JSG626) in tomato plants. When plants were sprayed on the leaves with a JSG626-contaminated solution, JSG626 persistence in the phyllosphere (bacteria located on the surface of the inoculated foliage and stem tissues) was lower at higher temperatures (30°C day/25°C night) than at lower temperatures (20°C day/15°C night). However, wounding cotyledons with contaminated tools improved JSG626 persistence and the internalization rate (2.27%) in planta compared to spray inoculation (0.004%). The systemic dissemination of JSG626 to other tissues increased when contaminated plants were grown under low relative humidity (<40%); however, JSG626 was only detected in the root systems at later sampling times (between 21 and 98 days postinoculation [dpi]). Further, after tomato scions were grafted onto rootstocks using contaminated cutting tools, dissemination of JSG626 was preferentially basipetal and occasionally acropetal in the plants, with higher persistence rates and loads of JSG626 in root systems compared to foliar tissues. JSG626 was detected in the grafting point and root systems up to 242 dpi; however, none of the fruits harvested from contaminated plants between 90 and 137 dpi were positive for JSG626. This study demonstrates that environmental temperature and relative humidity could be good indicators for estimating the persistence of Salmonella enterica in tomato plants. Further, root systems may represent a risk for long-term persistence of Salmonella enterica in tomato plants.IMPORTANCE Tomatoes are one of the most widely produced vegetables around the world; however, fresh tomatoes have been connected to multiple wide-scale salmonellosis outbreaks over the past decades. Salmonella is commonly found in the environment and can persist in hostile conditions for several weeks before being internalized into plant tissues, where it is protected from conventional sanitation methods. In addition to biotic factors (host, inoculum size, and phytobiome), abiotic factors (environmental conditions) may affect the persistence of Salmonella in crop production. This study demonstrates that specific environmental conditions, the inoculation method, and the inoculum density affect the persistence and dissemination of JSG626 in tomato plant tissues. Our findings enhance the understanding of interactions between Salmonella enterica and fresh produce and may lead to the development of novel management practices on farms.
Assuntos
Umidade , Salmonella typhimurium/fisiologia , Salmonella/fisiologia , Solanum lycopersicum/microbiologia , Temperatura , Contagem de Colônia Microbiana , Contaminação de Alimentos , Frutas , Folhas de Planta/microbiologia , Salmonella/crescimento & desenvolvimento , Infecções por Salmonella , Salmonella typhimurium/crescimento & desenvolvimentoRESUMO
Microencapsulation enhances the oral delivery of probiotic bacteria. In this study, the probiotic Escherichia coli Nissle 1917 (EcN) was microencapsulated using alginate and chitosan nanoparticles. The result showed 90% encapsulation yield of EcN, and the encapsulated EcN displayed significantly (P < 0.05) increased survival in low pH (1.5), high bile salt concentration (4%), and high temperature (70 °C). The most effective cryopreservatives of EcN during freezing and thawing was skim milk and sucrose. Exposure to microencapsulated EcN significantly (P < 0.05) reduced the Campylobacter jejuni growth by 2 log CFU. The rate of EcN release from microcapsule was 9.2 × 105 cell min-1, and the appropriate model to describe its release kinetics was zero order. Importantly, the entrapment of EcN inside the microcapsule did not eliminate the exterior diffusion of EcN produced antioxidant compounds. In addition, the EcN microcapsule efficiently adhered to intestinal HT-29 cells and the pre-treatment of HT-29 cells with EcN-microcapsule for 4 h significantly (P < 0.05) reduced the invasion (1.9 log) of C. jejuni; whereas, completely abolished the intracellular survival. Furthermore, HT-29 cells pre-treated with encapsulated EcN in PCR array showed decreased expression (> 1.5-fold) of genes encoding chemokines, toll-like receptors, interleukins, and tumor necrosis factors. In conclusion, the alginate-chitosan microcapsule can provide effectual platform to deliver probiotic EcN and thereby can reduce the Campylobacter infection in chickens and humans.
Assuntos
Campylobacter jejuni/efeitos dos fármacos , Composição de Medicamentos/métodos , Escherichia coli , Nanopartículas/química , Probióticos/farmacologia , Alginatos/química , Antioxidantes/metabolismo , Aderência Bacteriana , Campylobacter jejuni/crescimento & desenvolvimento , Quitosana/química , Criopreservação/métodos , Crioprotetores/farmacologia , Armazenamento de Medicamentos , Escherichia coli/efeitos dos fármacos , Suco Gástrico , Células HT29 , HumanosRESUMO
We investigated the contribution of litter to the occurrence of Campylobacter on three broiler farms, which were known to have low (LO) and high (HI-A and HI-B) Campylobacter prevalence. For this purpose, we collected litter samples (n = 288) during and after two rearing cycles from each farm. We evaluated the occurrence of Campylobacter (using selective enrichment and quantitative real-time polymerase chain reaction [q-PCR] analysis) in the litter samples as well as the litter's pH and moisture content. Ceca from each flock (n = 144) were harvested at slaughter age and used to quantify Campylobacter colony-forming units (CFUs). Campylobacter was only retrieved from 7 litter samples that were collected from HI-A and HI-B during the growing period, but no Campylobacter was isolated from LO farms. The q-PCR analysis detected Campylobacter in pooled litter samples from all three farms. However, in litter collected during the same rotation, Campylobacter levels were significantly higher (p < 0.05) in HI-A and HI-B litter samples in comparison to those in LO. Cecal samples from HI-A and HI-B yielded relatively high numbers of Campylobacter CFUs, which were undetectable in LO samples. Litter's pH and moisture did not affect the overall occurrence of Campylobacter in litter and ceca on any of the farms. Our data suggest that Campylobacter was generally more abundant in litter that was collected from farms with highly colonized flocks. Therefore, better approaches for assessing the occurrence of Campylobacter in litter might be warranted in order to reduce the dissemination of these pathogens on and off poultry farms.
Assuntos
Infecções por Campylobacter/microbiologia , Campylobacter/isolamento & purificação , Galinhas/microbiologia , Doenças Transmitidas por Alimentos/microbiologia , Doenças das Aves Domésticas/microbiologia , Animais , Campylobacter/genética , Infecções por Campylobacter/epidemiologia , Inocuidade dos Alimentos , Doenças Transmitidas por Alimentos/epidemiologia , Humanos , Concentração de Íons de Hidrogênio , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia , PrevalênciaRESUMO
For the detection of Cryptosporidium species in 804 animals and 165 diarrhoeic children (<10 years) in Egypt, two copro-antigen tests, the RIDASCREEN® Cryptosporidium test [enzyme immunoassay (EIA)] and the RIDA®QUICK Cryptosporidium/Giardia Combi [immuno-chromatographic test (ICT)] as well as polymerase chain reaction (PCR) were used. Prevalence of Cryptosporidium was 15.0, 19.5 and 32.3% in animals and 2.4, 6.7 and 49.1% in children using EIA, ICT and PCR, respectively.Using PCR as reference method, animal samples sensitivity (Se) of the EIA was 46.5% when questionable samples were considered positive, whereas specificity (Sp) was 100%. Se of the ICT was 60.4% while Sp was 100%. Positive predictive values (PPVs) for both EIA and ICT test were 100%, and negative predictive values (NPVs) for EIA were 79.7 and 84.1% for ICT. For the children samples, the Se of EIA was 5%, Sp was 100%, PPV was 100% and NPV was 52.2%, while the Se of ICT was 13.6%, Sp was 100%, PPV was 100% and NPV was 54.6%.The Kappa score of agreement between PCR and ICT was 67.4%, 54.1% between PCR and EIA and 84.4% between ICT and EIA. Until the second serial dilution of the EIA and ICT test, 9 × 10(3) oocysts/µl of Cryptosporidia was detected, whereas in PCR, they were detected until the sixth serial dilution. Copro-antigen tests were easy to perform and less time-consuming but less sensitive compared to PCR. They obviously are best applicable for screening and epidemiological studies of large numbers of subjects, for batch specimen processing and in isolated or rural areas where reliable tests like PCR are unfeasible. When in children, a single stool sample is used for the diagnosis of clinical cases; better results can be obtained when non-standardized PCR due low specificity is coupled with copro-antigen tests.
Assuntos
Criptosporidiose/diagnóstico , Cryptosporidium/isolamento & purificação , Diarreia/parasitologia , Animais , Búfalos , Bovinos , Criança , Cromatografia de Afinidade , Egito , Fezes/parasitologia , Humanos , Técnicas Imunoenzimáticas , Masculino , Oocistos , Reação em Cadeia da Polimerase , Valor Preditivo dos Testes , Sensibilidade e EspecificidadeRESUMO
Next-generation probiotics (NGPs) represent an innovative group of beneficial bacteria that are currently undergoing research and development. NGPs are designed not only for conventional use as foods or dietary supplements but are also tailored for pharmaceutical applications. Research indicates that NGPs show therapeutic promise in addressing various chronic ailments. Offering multiple advantages over conventional probiotics, NGPs present opportunities for personalized probiotic therapies, involvement in synthetic biology and gene editing, participation in combination therapies, targeted delivery methods, and application in therapeutic settings. Our review discusses the potential therapeutic effect of the NGPs, covering diverse research trajectories for NGPs, including their identification, characterization, and targeted delivery. Furthermore, this review elucidates the influence of NGPs on critical aspects of human health, specifically, gut health, immune function, and broader health outcomes. Mechanistic insights encompass the production of bioactive compounds, competitive interactions with pathogenic bacteria, the modulation of immune cell activity, and the reinforcement of the gut barrier. What is noteworthy is that the current review points out the prevalent NGP strains and their diverse sources, providing a highlight for the comprehensive framework for understanding their potential applications and their future benefits in the domain of advanced therapeutics.
RESUMO
Horses play a significant role in the direct or indirect transmission of Salmonella to humans. Here, we report the draft genomes of multidrug-resistant Salmonella enterica subsp. enterica serovar Mbandaka YAH-F68 isolated from foals in Kentucky, USA belonging to sequence type 413 and harboring the mobile colistin resistance gene mcr-9.1.
RESUMO
Here, we report the draft genome sequences of two Bacillus licheniformis strains harboring the lichenysin operon that were isolated from healthy goat and horse in South Africa. The genomes were sequenced using Illumina MiSeq and had a length of 4,152,826 and 4,110,075 bp, respectively, with a G + C content of 46%.
RESUMO
Introduction: Control of Campylobacter from farm to fork is challenging due to the frequent emergence of antimicrobial-resistant isolates. Furthermore, poultry production systems are known reservoirs of Campylobacter. The twin-arginine translocation (Tat) pathway is a crucial bacterial secretion system that allows Campylobacter to colonize the host intestinal tract by using formate as the main source of energy. However, Tat pathway is also a major contributing factor for resistance to copper sulfate (CuSO4). Methods: Since mammals and chickens do not have proteins or receptors that are homologous to bacterial Tat proteins, identification of small molecule (SM) inhibitors targeting the Tat system would allow the development of safe and effective control methods to mitigate Campylobacter in infected or colonized hosts in both pre-harvest and post-harvest. In this study, we screened 11 commercial libraries (n = 50,917 SM) for increased susceptibility to CuSO4 (1 mM) in C. jejuni 81-176, a human isolate which is widely studied. Results: Furthermore, we evaluated 177 SM hits (2.5 µg/mL and above) that increased the susceptibility to CuSO4 for the inhibition of formate dehydrogenase (Fdh) activity, a Tat-dependent substrate. Eight Tat-dependent inhibitors (T1-T8) were selected for further studies. These selected eight Tat inhibitors cleared all tested Campylobacter strains (n = 12) at >10 ng/mL in the presence of 0.5 mM CuSO4in vitro. These selected SMs were non-toxic to colon epithelial (Caco-2) cells when treated with 50 µg/mL for 24 h and completely cleared intracellular C. jejuni cells when treated with 0.63 µg/mL of SM for 24 h in the presence of 0.5 mM of CuSO4. Furthermore, 3 and 5-week-old chicks treated with SM candidates for 5 days had significantly decreased cecal colonization (up to 1.2 log; p < 0.01) with minimal disruption of microbiota. In silico analyses predicted that T7 has better drug-like properties than T2 inhibitor and might target a key amino acid residue (glutamine 165), which is located in the hydrophobic core of TatC protein. Discussion: Thus, we have identified novel SM inhibitors of the Tat pathway, which represent a potential strategy to control C. jejuni spread on farms.
RESUMO
With the rapidly increasing demand for poultry products and the current challenges facing the poultry industry, the application of biotechnology to enhance poultry production has gained growing significance. Biotechnology encompasses all forms of technology that can be harnessed to improve poultry health and production efficiency. Notably, biotechnology-based approaches have fueled rapid advances in biological research, including (a) genetic manipulation in poultry breeding to improve the growth and egg production traits and disease resistance, (b) rapid identification of infectious agents using DNA-based approaches, (c) inclusion of natural and synthetic feed additives to poultry diets to enhance their nutritional value and maximize feed utilization by birds, and (d) production of biological products such as vaccines and various types of immunostimulants to increase the defensive activity of the immune system against pathogenic infection. Indeed, managing both existing and newly emerging infectious diseases presents a challenge for poultry production. However, recent strides in vaccine technology are demonstrating significant promise for disease prevention and control. This review focuses on the evolving applications of biotechnology aimed at enhancing vaccine immunogenicity, efficacy, stability, and delivery.
RESUMO
In the present study, a total of 720 samples were collected from retail raw meat from 13 upazilas in Sylhet District, Bangladesh, of which 225 samples were from cattle meat, 210 samples were from goat meat, and 285 samples were from chicken meat. Salmonella enterica serovars Typhimurium and Enteritidis were screened for extended-spectrum ß-lactamase (ESBL) genes using multiplex PCR. Among the 720 samples, Salmonella spp. was detected in 28.06% (202 out of 720) of the samples, with S. Enteritidis and S. Typhimurium were identified in 11.53% (83 out of 720) and 12.22% (88 out of 720) of the samples, respectively. It was found that all Salmonella enterica serovars isolated from cattle meat displayed multidrug resistance (MDR) based on antimicrobial susceptibility testing. Notably, a significant proportion of S. Enteritidis isolates and all S. Typhimurium isolates from goat meat demonstrated complete resistance to multiple drugs (ampicillin, cefuroxime, and ceftazidime). Regarding chicken meat, out of 89 isolates encompassing both S. Typhimurium and S. Enteritidis, 57 isolates (64.04%) exhibited MDR. Additionally, blaCTX-M-1 exhibited the highest occurrence at 15.69% for S. Typhimurium and 7.89% for S. Enteritidis in chicken meat. Moreover, blaCTX-M-9 was only detected at 3.92% for S. Enteritidis in chicken meat. Furthermore, blaOXA had the highest prevalence rate of 19.04% for S. Enteritidis and 25.80% for S. Typhimurium in cattle meat, followed by chicken meat. These findings highlight the urgency for monitoring ESBL-producing Salmonella in retail raw meat and the need for strict measure to manage antibiotic use to prevent the spread of multidrug-resistant and ESBL-producing Salmonella strains, thereby protecting humans and reducing public health risks.
RESUMO
Reduced-fat labneh, while offering health benefits, often presents a challenge due to its diminished nutritional profile compared to full-fat varieties. Microalgae, such as Spirulina platensis and Chlorella vulgaris, are increasingly explored for their potential to fortify foods with essential nutrients. This study innovatively investigates the use of these microalgae to enhance the quality of reduced-fat labneh. The effect of incorporating different concentrations of both microalgae was investigated at different concentrations (0.25, 0.5, and 1%) on nutritional profile (including total solids, fat, protein, carbohydrates, essential amino acids, unsaturated fatty acids, pigments, and phenolic compounds), antioxidant activity, texture, sensory attributes, and viability of the starter culture. The findings revealed that 0.25 and 0.5% concentrations of both microalgae positively influenced the sensory characteristics of the labneh and significantly enhanced its nutritional profile. However, a 1% concentration negatively impacted sensory qualities. Chlorella vulgaris enrichment resulted in higher pH values but compromised texture attributes. Importantly, both microalgae varieties enhanced the viability of the starter culture during 21 days of refrigerated storage. The scanning electron microscope images provide visual evidence of the microstructural changes in labneh with varying concentrations of microalgae and over different storage periods. This research establishes the optimal concentrations for individual microalgae enrichment in reduced-fat labneh, offering valuable insights into their potential to improve both nutritional and sensory aspects. However, it's important to mention that while both microalgae have similar effects, they might differ in their specific impacts due to their unique nutritional profiles and physical properties. Therefore, further investigations could explore optimizing a microalgae mixture and its potential application in functional food development.
Assuntos
Chlorella vulgaris , Microalgas , Spirulina , Spirulina/metabolismo , Valor Nutritivo , Antioxidantes/farmacologiaRESUMO
The equine industry holds substantial economic importance not only in the USA but worldwide. The occurrence of various infectious bacterial diseases in horses can lead to severe health issues, economic losses, and restrictions on horse movement and trade. Effective management and control of these diseases are therefore crucial for the growth and sustainability of the equine industry. While antibiotics constitute the primary treatment strategy for any bacterial infections in horses, developing resistance to clinically important antibiotics poses significant challenges to equine health and welfare. The adverse effects of antimicrobial overuse and the escalating threat of resistance underscore the critical importance of antimicrobial stewardship within the equine industry. There is limited information on the epidemiology of antimicrobial-resistant bacterial infections in horses. In this comprehensive review, we focus on the history and types of antimicrobials used in horses and provide recommendations for combating drug-resistant bacterial infections in horses. This review also highlights the epidemiology of antimicrobial resistance (AMR) in horses, emphasizing the public health significance and transmission dynamics between horses and other animals within a One Health framework. By fostering responsible practices and innovative control measures, we can better help the equine industry combat the pressing threat of AMR and thus safeguard equine as well as public health.
RESUMO
Salmonella is a major foodborne pathogen and a leading cause of gastroenteritis in humans and animals. Salmonella is highly pathogenic and encompasses more than 2600 characterized serovars. The transmission of Salmonella to humans occurs through the farm-to-fork continuum and is commonly linked to the consumption of animal-derived food products. Among these sources, poultry and poultry products are primary contributors, followed by beef, pork, fish, and non-animal-derived food such as fruits and vegetables. While antibiotics constitute the primary treatment for salmonellosis, the emergence of antibiotic resistance and the rise of multidrug-resistant (MDR) Salmonella strains have highlighted the urgency of developing antibiotic alternatives. Effective infection management necessitates a comprehensive understanding of the pathogen's epidemiology and transmission dynamics. Therefore, this comprehensive review focuses on the epidemiology, sources of infection, risk factors, transmission dynamics, and the host range of Salmonella serotypes. This review also investigates the disease characteristics observed in both humans and animals, antibiotic resistance, pathogenesis, and potential strategies for treatment and control of salmonellosis, emphasizing the most recent antibiotic-alternative approaches for infection control.
RESUMO
Consumer demand for plant-based alternatives drives innovation in nondairy beverages. This study explores the development of a novel sesame milk with enhanced functionality using an artificial neural network (ANN) and milk permeate integration. An ANN model effectively optimized water-based sesame milk (WSM) extraction, maximizing total solids (T.S.) recovery. The ANN model's predicted T.S. yield (99.65%) closely matched the actual value (95.18%), demonstrating its potential for optimizing high-yield production. Furthermore, milk permeate was incorporated (5:1 ratio) to create permeate-based sesame milk (PSM), which supported the growth of lactic acid bacteria, suggesting its potential as a growth medium for future probiotic applications. PSM also displayed superior nutritional value and sensory characteristics compared to WSM. These findings highlight the promise of ANN-powered optimization and milk permeate integration for creating innovative sesame milk alternatives with enhanced probiotic viability and sensory appeal. Future research should focus on ANN optimization of alternative-based-plant milk, including permeate-based sesame milk production, the health benefits of LAB fermentation, and consumer preferences for flavors and textures. Optimizing fermentation and LAB selection remain key for commercial success.