Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(2): e3002527, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422113

RESUMO

TDP-43 is an essential RNA-binding protein strongly implicated in the pathogenesis of neurodegenerative disorders characterized by cytoplasmic aggregates and loss of nuclear TDP-43. The protein shuttles between nucleus and cytoplasm, yet maintaining predominantly nuclear TDP-43 localization is important for TDP-43 function and for inhibiting cytoplasmic aggregation. We previously demonstrated that specific RNA binding mediates TDP-43 self-assembly and biomolecular condensation, requiring multivalent interactions via N- and C-terminal domains. Here, we show that these complexes play a key role in TDP-43 nuclear retention. TDP-43 forms macromolecular complexes with a wide range of size distribution in cells and we find that defects in RNA binding or inter-domain interactions, including phase separation, impair the assembly of the largest species. Our findings suggest that recruitment into these macromolecular complexes prevents cytoplasmic egress of TDP-43 in a size-dependent manner. Our observations uncover fundamental mechanisms controlling TDP-43 cellular homeostasis, whereby regulation of RNA-mediated self-assembly modulates TDP-43 nucleocytoplasmic distribution. Moreover, these findings highlight pathways that may be implicated in TDP-43 proteinopathies and identify potential therapeutic targets.


Assuntos
Proteínas de Ligação a DNA , Ribonucleoproteínas , Proteinopatias TDP-43 , Humanos , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/metabolismo , Substâncias Macromoleculares/metabolismo , Ribonucleoproteínas/metabolismo , RNA , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/metabolismo
2.
Biodegradation ; 33(2): 117-133, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34989928

RESUMO

Application of genetically engineered bacterial strains for biodegradation of hydrocarbons is a sustainable solution for treating pollutants as well as in industrial applications. However, the process of bioengineering should be carefully carried out to optimize the output. Investigation of regulatory genes for bioengineering is essential for developing synthetic circuits for effective biocatalysts. Here we focus on LcaR, a putative transcriptional regulator affecting the expression of alkB2 and lcaR operon that has a high potential to become a tool in designing such pathways. Four LcaR dimers bind specifically to the upstream regulatory region where divergent promoters of alkB2 and lcaR genes are located with high affinity at a Kd of 0.94 ± 0.17 nM and a Hill coefficient is 1.7 ± 0.3 demonstrating cooperativity in the association. Ligand binding alters the conformation of LcaR, which releases the regulator from its cognate DNA. Tetradecanal and hexadecanal act as natural ligands of LcaR with an IC50 values of 3.96 ± 0.59 µg/ml and 0.68 ± 0.21 µg/ml, respectively. The structure and function of transcription factors homologous to LcaR have not been characterized to date. This study provides insight into regulatory mechanisms of alkane degradation with a direction towards potential applications in bioengineering for bioremediation and industrial applications.


Assuntos
Alcanos , Pseudomonas aeruginosa , Alcanos/metabolismo , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Bioengenharia , Pseudomonas aeruginosa/metabolismo
3.
bioRxiv ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37609278

RESUMO

TDP-43 is an essential RNA-binding protein strongly implicated in the pathogenesis of neurodegenerative disorders characterized by cytoplasmic aggregates and loss of nuclear TDP-43. The protein shuttles between nucleus and cytoplasm, yet maintaining predominantly nuclear TDP-43 localization is important for TDP-43 function and for inhibiting cytoplasmic aggregation. We previously demonstrated that specific RNA binding mediates TDP-43 self-assembly and biomolecular condensation, requiring multivalent interactions via N- and C-terminal domains. Here, we show that these complexes play a key role in TDP-43 nuclear retention. TDP-43 forms macromolecular complexes with a wide range of size distribution in cells and we find that defects in RNA binding or inter-domain interactions, including phase separation, impair the assembly of the largest species. Our findings suggest that recruitment into these macromolecular complexes prevents cytoplasmic egress of TDP-43 in a size-dependent manner. Our observations uncover fundamental mechanisms controlling TDP-43 cellular homeostasis, whereby regulation of RNA-mediated self-assembly modulates TDP-43 nucleocytoplasmic distribution. Moreover, these findings highlight pathways that may be implicated in TDP-43 proteinopathies and identify potential therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA